首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Journal of dairy science》2022,105(6):4843-4856
Camel milk (CM) can be used as an ingredient to produce various dairy products but it forms weak rennet-induced and acid-induced gels compared with bovine milk (BM). Therefore, in this study, we aimed to investigate the effect of blending bovine milk with camel milk on the physicochemical, rheological (amplitude sweep and frequency sweep), and microstructural properties of low-fat akawi (LFA) cheese. The cheeses were made of BM only or BM blended with 15% (CM15%) or 30% (CM30%) camel milk and stored at 4°C for 28 d. The viscoelastic properties as a function of temperature were assessed. The LFA cheeses made from blended milks had higher moisture, total Ca, and soluble Ca contents, and had higher pH 4.6–water-soluble nitrogen compared with those made from BM. Analysis by scanning electron microscopy demonstrated that the microstructures formed in BM cheese were rough with granular surfaces, whereas those in blended milk cheeses had smooth surfaces. Hardness was lower for LFA cheeses made from blended milk than for those made from BM only. The LFA cheeses demonstrated viscoelastic behavior in a linear viscoelastic range from 0.1 to 1.0% strain. The storage modulus (G′) was lower in LFA cheese made from BM over a range of frequencies. Adding CM reduced the resistance of LFA cheeses to flow as temperature increased. Blended cheeses exhibited lower complex viscosity values than BM cheeses during temperature increases. Thus, the addition of camel milk improved the rheological properties of LFA cheese.  相似文献   

2.
Low-moisture, part-skim (LMPS) Mozzarella cheeses were made from concentration factor (CF) 6, 7, 8, and 9, pH 6.0 skim milk microfiltration (MF) retentates using a vatless cheese-making process. The compositional and proteolytic effects of cheese made from 4 CF retentates were evaluated as well as their functional properties (meltability and stretchability). Pasteurized skim milk was microfiltered using a 0.1-microm ceramic membrane at 50 degrees C to a retentate CF of 6, 7, 8, and 9. An appropriate amount of cream was added to achieve a constant casein:fat ratio in the 4 cheesemilks. The ratio of rennet to casein was also kept constant in the 4 cheesemilks. The compositional characteristics of the cheeses made from MF retentates did not vary with retentate CF and were within the legal range for LMPS Mozzarella cheese. The observed reduction in whey drained was greater than 90% in the cheese making from the 4 CF retentates studied. The development of proteolytic and functional characteristics was slower in the MF cheeses than in the commercial samples that were used for comparison due to the absence of starter culture, the lower level of rennet used, and the inhibition of cheese proteolysis due to the inhibitory effect of residual whey proteins retained in the MF retentates, particularly high molecular weight fractions.  相似文献   

3.
The objective of this study was to compare the effect of coagulant (bovine calf chymosin, BCC, or camel chymosin, CC), on the functional and sensory properties and performance shelf-life of low-moisture, part-skim (LMPS) Mozzarella. Both chymosins were used at 2 levels [0.05 and 0.037 international milk clotting units (IMCU)/mL], and clotting temperature was varied to achieve similar gelation times for each treatment (as this also affects cheese properties). Functionality was assessed at various cheese ages using dynamic low-amplitude oscillatory rheology and performance of baked cheese on pizza. Cheese composition was not significantly different between treatments. The level of total calcium or insoluble (INSOL) calcium did not differ significantly among the cheeses initially or during ripening. Proteolysis in cheese made with BCC was higher than in cheeses made with CC. At 84 d of ripening, maximum loss tangent values were not significantly different in the cheeses, suggesting that these cheeses had similar melt characteristics. After 14 d of cheese ripening, the crossover temperature (loss tangent = 1 or melting temperature) was higher when CC was used as coagulant. This was due to lower proteolysis in the CC cheeses compared with those made with BCC because the pH and INSOL calcium levels were similar in all cheeses. Cheeses made with CC maintained higher hardness values over 84 d of ripening compared with BCC and maintained higher sensory firmness values and adhesiveness of mass scores during ripening. When melted on pizzas, cheese made with CC had lower blister quantity and the cheeses were firmer and chewier. Because the 2 types of cheeses had similar moisture contents, pH values, and INSOL Ca levels, differences in proteolysis were responsible for the firmer and chewier texture of CC cheeses. When cheese performance on baked pizza was analyzed, properties such as blister quantity, strand thickness, hardness, and chewiness were maintained for a longer ripening time than cheeses made with BCC, indicating that use of CC could help to extend the performance shelf-life of LMPS Mozzarella.  相似文献   

4.
Abstract: The effect of curd washing on functional properties of low-moisture mozzarella cheese made with galactose-fermenting culture was investigated. A total of 4 curd washing levels (0%, 10%, 25%, 50% wt/wt) were used during low-moisture mozzarella cheese manufacture, and cheeses were stored for 63 d at 4 °C and the influence of curd washing on proteolysis and functionality of low-moisture mozzarella cheese were examined. Curd washing had a significant effect on moisture and ash contents. In general, moisture contents increased and ash contents decreased with increased curd washing levels. Low-moisture mozzarella cheese made with 10% curd washing levels showed higher proteolysis, meltability, and stretchability during storage than other experimental cheeses. In general, galactose contents decreased during storage; however, cheeses made with 25% and 50% curd washing levels had lower galactose contents than those with control or 10%. L*-values (browning) decreased and proteolysis increased in low-moisture mozzarella cheeses during storage.  相似文献   

5.
6.
In attempts to produce a low-fat cheese with a rheology and texture similar to that of a full-fat cheese, guar gum (within 0.0025–0.01%; w/v, final concentration) was added to low-fat milk. The obtained cheeses were characterised regarding their physicochemical, thermal, rheological and textural properties. Control cheeses were also produced with low and full-fat milk. The physicochemical properties of the guar gum modified cheeses were similar to those of the low-fat control. No significant differences were detected in the thermal properties (concerning the enthalpy and profile of water desorption) among all types of cheeses. The rheological behaviour of the 0.0025% modified cheese was very similar to the full-fat control. Overall, no trend was observed in the texture profile (hardness, cohesiveness, gumminess and elasticity) of the modified cheeses versus guar gum concentration, as well as in comparison with the control groups, suggesting that none of the studied polysaccharide concentrations simulated the textural functions of fat in Edam cheese.  相似文献   

7.
Compositional changes in raw and pasteurized cream and unconcentrated sweet cream buttermilk (SCB) obtained from a local dairy were investigated over 1 yr. Total phospholipid (PL) composition in SCB ranged from 0.113 to 0.153%. Whey protein denaturation in pasteurized cream over 1 yr ranged from 18 to 59%. Pizza cheese was manufactured from milk standardized with condensed SCB (∼34.0% total solids, 9.0% casein, 17.8% lactose). Effects of using condensed SCB on composition, yield, PL recovery, and functional properties of pizza cheese were investigated. Cheesemilks were prepared by adding 0, 2, 4, and 6% (wt/wt) condensed SCB to part-skim milk, and cream was added to obtain cheesemilks with ∼11.2 to 12.7% total solids and casein:fat ratio of ∼1. Use of condensed SCB resulted in a significant increase in cheese moisture. Cheese-making procedures were modified to obtain similar cheese moisture contents. Fat and nitrogen recoveries in SCB cheeses were slightly lower and higher, respectively, than in control cheeses. Phospholipid recovery in cheeses was below 40%. Values of pH and 12% trichloro-acetic acid-soluble nitrogen were similar among all treatments. Cheeses made from milk standardized with SCB showed less melt and stretch than control cheese, especially at the 4 and 6% SCB levels. Addition of SCB significantly lowered free oil at wk 1 but there were no significant differences at wk 2 and 4. Use of SCB did not result in oxidized flavor in unmelted cheeses. At low levels (e.g., 2% SCB), addition of condensed SCB improved cheese yield without affecting compositional, rheological, and sensory properties of cheese.  相似文献   

8.
The physicochemical, rheological and sensory attributes of a low‐fat Domiati cheese produced using carboxymethylcellulose (CMC), a hydrocolloid, at 0.4, 0.6, 0.8 and 1% (w?w) were examined during the ripening period. Results indicated that, as the carboxymethylcellulose content of cheese milk increased, cheese yield and moisture of low‐fat Domiati cheese significantly increased but the protein, salt and fat values significantly decreased. Rheological parameters were significantly lower in cheeses made with CMC. With regard to the sensory properties of the cheeses, low‐fat Domiati cheese made with 1% (w?w) CMC recorded the highest scores for sensory attributes.  相似文献   

9.
Low-moisture part-skim Mozzarella cheeses were manufactured from 2% fat milk and aged for 21 d. Treatments included cheeses made with one of three different strains of Lactobacillus delbrueckii ssp. bulgaricus in combination with a single strain of Streptococcus thermophilus. A fourth, control treatment consisted of cheeses made with only S. thermophilus. Although total proteolytic ability of these strains, as indicated by the o-phthaldialdehyde analysis, was similar in each of the three strains of L. bulgaricus, these strains exhibited different proteolytic specificities toward the peptide, alpha(s1)-CN (f 1-23). On the basis of their alpha(s1)-CN (f 1-23) cleavage patterns and a previously described classification, these strains were assigned to the groups I, III, and V. The objective of this study was to investigate the influence of lactobacilli proteolytic systems, based on specificity toward alpha(s1)-CN (f 1-23), on functionality of part-skim Mozzarella cheese. Moisture, fat, protein, salt-in-moisture, and moisture in nonfat substances content of cheeses made with groups I, III, and V strain were similar. Control cheese had a lower moisture content than did other treatments. Significant differences were observed in functional properties between cheeses manufactured using groups III and V strains. Cheeses made with groups I and III strains were similar in their meltability, hardness, cohesiveness, melt strength, and stretch quality. Meltability and cohesiveness increased with age, while melt strength and stretch quality decreased with age for all cheeses. Additionally, HPLC showed that total peak areas of water-soluble peptides derived from cleavage of alpha(s1)-CN (f 1-23) by different strains of lactobacilli could be highly correlated to meltability and stretch characteristics of cheeses made with those strains.  相似文献   

10.
The physicochemical, rheological and sensory properties during the storage of Kariesh cheeses made with 0.1, 0.2, 0.3, 0.4 or 0.5 g wheat bran/100 g milk were evaluated at 0, 7 and 15 days. The cheeses with 0.5 g wheat bran/100 g milk had a significantly (P < 0.01) higher yield and moisture content, and lower pH and protein content than the control. No significant differences (P > 0.01) in salt and ash contents were observed among the cheeses studied. Texture profile analysis showed that the rheological characteristics decreased significantly in cheeses made with wheat bran. These results suggested that wheat bran (up to 0.4%) can be used to produce a fibre fortified Kariesh cheese.  相似文献   

11.
The viscoelastic properties of mozzarella cheese using a creep/recovery test considering different sampling directions (parallel and perpendicular to protein fiber orientation), test temperatures (20, 30 and 40C) and ripening times (1, 8, 15, 29 and 36 days) were studied. Creep data were interpreted by a Burger model of four parameters. A semiempirical approach was proposed to obtain the contribution of each main compliance to the total deformation of the system. Creep tests at different temperatures allowed gaining a better understanding of changes that occur in the cheese matrix during heating and ripening. Sampling direction did not affect any of the parameters studied. Finally, it was clearly observed that cheese matrix behaves as a quite different physicochemical system depending on temperature. Therefore, it is recommended to carry out the rheological tests at different temperatures to evaluate appropriately the viscoelastic properties of mozzarella cheese.

PRACTICAL APPLICATIONS


Mozzarella cheese must have certain characteristics to be used on pizzas and on other prepared foods that use the cheese in melted state. The protein chains in the mozzarella curds coalesce into large strands that are oriented in the direction of stretching. For this reason, mozzarella cheese has an anisotropic structure. Therefore, it is relevant to determine the effect of protein fiber orientation on the rheological properties. Valuable information may be obtained through the creep/recovery test of mozzarella cheese samples to study its rheological properties and to explain molecular mechanisms that occur during ripening or melting processes considering sampling direction.  相似文献   

12.
The compositional and functional properties of commercial retail and/or wholesale samples (n = 8) of low-moisture mozzarella, cheddar and analogue (pizza) cheeses were compared. Inter-and intravariety differences were evident with intravariety differences in composition being relatively large for the analogue cheese. Cheddar had the lowest mean pH and level of expressible serum and the highest mean levels of proteolysis, expressible fat, and serum calcium and nitrogen (p < 0.05). Compared to mozzarella, the analogue cheeses had significantly lower (p < 0.05) mean levels of total protein and serum calcium, higher levels of total calcium and higher cheese pH. The mean stretchability of the melted mozzarella cheese was significantly higher than that of the melted cheddar or analogue cheeses. The melted cheddar had the highest mean flowability and lowest mean apparent viscosity (p < 0.05). The mean flowability and apparent viscosity of the analogue cheese were numerically lower and higher, respectively, than those of mozzarella.  相似文献   

13.
Stress relaxation and dynamic profiles of low-moisture, part-skim (LMPS) Mozzarella cheese cylinders refrigerated 14 days (control), frozen and thawed, and stored frozen and refrigerated up to 90 days were compared. Samples were frozen at ?30°C and stored at ?20°C. Thawing and refrigerated storage were at 5°C. Stress relaxation tests were conducted at 20°C and dynamic spectrometry at 20°C and 60°C. The frozen and thawed Mozzarella cheese tested at 20°C became harder and more elastic with storage time, while refrigerated stored samples became softer and more elasticoviscous with time. Upon melting, both go-day-frozen and go-day-refrigerated cheeses were less elastic and less viscous than 14-day-refrigerated samples.  相似文献   

14.
The objective of this study was to compare the effects of vacuum-condensed (CM) and ultrafiltered (UF) milk on some compositional and functional properties of Cheddar cheese. Five treatments were designed to have 2 levels of concentration (4.5 and 6.0% protein) from vacuum-condensed milk (CM1 and CM2) and ultrafiltered milk (UF1 and UF2) along with a 3.2% protein control. The samples were analyzed for fat, protein, ash, calcium, and salt contents at 1 wk. Moisture content, soluble protein, meltability, sodium dodecyl sulfate-PAGE, and counts of lactic acid bacteria and nonstarter lactic acid bacteria were performed on samples at 1, 18, and 30 wk. At 1 wk, the moisture content ranged from 39.2 (control) to 36.5% (UF2). Fat content ranged from 31.5 to 32.4% with no significant differences among treatments, and salt content ranged from 1.38 to 1.83% with significant differences. Calcium content was higher in UF cheeses than in CM cheeses followed by control, and it increased with protein content in cheese milk. Ultrafiltered milk produced cheese with higher protein content than CM milk. The soluble protein content of all cheeses increased during 30 wk of ripening. Condensed milk cheeses exhibited a higher level of proteolysis than UF cheeses. Sodium dodecyl sulfate-PAGE showed retarded proteolysis with increase in level of concentration. The breakdown of alphas1- casein and alphas1-I-casein fractions was highest in the control and decreased with increase in protein content of cheese milk, with UF2 being the lowest. There was no significant degradation of beta-casein. Overall increase in proteolytic products was the highest in control, and it decreased with increase in protein content of cheese milk. No significant differences in the counts of lactic starters or nonstarter lactic acid bacteria were observed. Extent as well as method of concentration influenced the melting characteristics of the cheeses. Melting was greatest in the control cheeses and least in cheese made from condensed milk and decreased with increasing level of milk protein concentration. Vacuum condensing and ultrafiltration resulted in Cheddar cheeses of distinctly different quality. Although both methods have their advantages and disadvantages, the selection of the right method would depend upon the objective of the manufacturer and intended use of the cheese.  相似文献   

15.
A model lipoproteic matrix able to mimic hard-type cheese was produced with controlled structural and textural properties. Changes in the microstructural and rheological properties of these model cheeses made from different milk concentrate powder, anhydrous milk fat, salt contents and pH values at renneting were characterised. Rheological properties were measured by texture profile analysis, fat globule and protein aggregate size distributions by laser light scattering. Microstructural properties of the model matrices were studied by confocal laser scanning and scanning electron microscopy.Significant differences between the matrices were found for the structural, physico-chemical and rheological parameters measured. Cheeses with higher dry matter content were significantly harder and contained more insoluble proteins than cheeses with lower dry matter content. The salt concentration and the pH at renneting had significant influence on cheese hardness and adhesiveness of rheological parameters. The model lipoproteic matrix presented air bubbles and powder aggregates which could not be avoided during the manufacture of products. However, compared with classic cheese making with rennet or acid coagulation, the technology used here allows model cheeses to be produced rapidly with a good reproducibility of texture.  相似文献   

16.
The effect of milk origin on the physicochemical characteristics, microstructure and texture of Lighvan cheese was investigated over a 90‐day ripening period. Besides fat, other physicochemical properties of Lighvan cheese were affected by milk type. The moisture content of Lighvan cheese decreased when half or all the ovine milk was substituted with bovine milk. The Lighvan cheese's microstructural properties and porosity were affected by type of milk and ripening time. Compaction of cheeses manufactured from ovine and mixed ovine and bovine milk is similar, and more than that of bovine Lighvan cheese. Ovine Lighvan cheese is harder and less brittle than bovine and mixed bovine and ovine.  相似文献   

17.
ABSTRACT: Correlation and regression analyses of calcium concentration and rheological characteristics in Mozzarella cheese were studied. Part-skim and fat-free Mozzarella cheeses were manufactured on 4 separate occasions. Calcium concentration in both types of cheeses was manipulated at 4 different levels. Rheological characteristics such as melt area, softening, melting, and flow were studied on days 1, 7, 15, and 30. The results revealed that 57%, 52%, 66%, 74%, 67%, and 53% variation, respectively, in melt area, softening temperature, softening time, melting time, flow rate, and extent of flow could be explained as a function of calcium concentration of part-skim Mozzarella cheese. Calcium concentration explained 50%, 61%, and 43% variation, respectively, in melting time, flow rate and extent of flow, but poor correlation existed between calcium concentration and melt area, softening and melting time-temperatures of fat-free Mozzarella cheese. Calcium concentration, among all compositional parameters, was highly correlated with rheological characteristics of Mozzarella cheeses. Calcium concentration was also one of the major predictor variables in regression models, which were developed to decide the rheological characteristics of Mozzarella cheese. Based on the above correlation the cheese industry can develop a strategy to obtain specific characteristics in Mozzarella cheese for varied applications in the food systems.  相似文献   

18.
Changes in texture of a low-moisture, part-skim and a low-fat, part-skim Moz-zarella cheese during heating were examined by measuring their rheological properties using small amplitude oscillatory shear (SAOS) tests after 1, 4 and 12 weeks of refrigerated storage. In general, the linear viscoelastic range decreases with increasing temperature and age because cheese behaves more like a viscoelastic solid at lower temperature and shorter ripening time. The dynamic rheological properties (η*, G' and G") were constant within a range of 0.05% shear strain. The dynamic rheological properties of low-fat, part-skim Mozzarella were found to be higher than that of low-moisture, part-skim Mozzarella within the linear viscoelastic range.  相似文献   

19.
20.
Four treatments of Cheddar cheese with two levels (high and low) of calcium (Ca) and phosphorus (P), and two levels (high and low) of residual lactose were manufactured. Each treatment was subsequently split prior to the salting step of cheese manufacturing process and salted at two levels (high and low) for a total of eight treatments. After two months of ripening, each treatment of Cheddar cheese was used to manufacture process cheese using a twin-screw Blentech process cheese cooker. NFDM, butter oil, trisodium citrate (emulsifying salt), and water were added along with Cheddar cheese for process cheese formulation. All process cheese food formulations were balanced for moisture (43.5%), fat (25%), and salt (2%), respectively. Dynamic rheological characteristics (G′ and G″) of process cheese were determined at 1.5Hz frequency and 750 Pa stress level by using a Viscoanalyzer during heating and cooling, temperature ranges from 30°C to 70°C then back to 30°C. High Ca and P content, and high S/M (HHH and HLH) cheeses had the significantly higher elastic (G′) and viscous (G″) modulus than other cheeses during heating from 30°C to 70°C, and cooling from 70°C to 30°C. No significant difference was observed among the other process cheeses during heating and cooling. Viscoelastic properties of process cheeses were also determined in terms of transition temperature (where G′?=?G″), and tan δ during heating (30°C to 70°C). Cheeses with high Ca and P, high lactose, and high S/M content had higher transition temperature than low Ca and P, low lactose, and low S/M content process cheeses. Low Ca and P and low S/M content cheeses (LLL, LHH, LHL, HLL) exhibited more viscous characteristics than high Ca and P and high S/M content process cheeses (HHL, HLH, LLH, HHH) during heating from 30°C to 70°C. Low Ca and P, low lactose, low S/M content (LLL) process cheese was observed for highest tan δ values (0.39 to 1.43), whereas high Ca and P, high lactose, high S/M content process (HHH) had the least (0.33 to 1.06) during heating. This study demonstrates that different characteristics of natural cheese used in process cheese manufacturing have significant impact on process cheese rheological and viscoelastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号