首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The objective of this study was to determine the contribution of cow factors to the probability of a successful first insemination (SFI). The investigation was performed with 51,791 lactations from 1,396 herds obtained from the Dutch dairy cow database of the Cattle Improvement Co-operative (CRV). Cows that had the first insemination (AI) between 40 and 150 d postpartum were selected. The first AI was classified as successful when cows were not reinseminated and either calved between 267 and 295 d later or were culled within 135 to 295 d after first AI. The lactation curve characteristics of individual lactations were estimated by Wilmink's curve using the test-day milk records from CRV. The lactation curve characteristics (peak milk yield, milk yield at the first-AI date, time of peak yield (PT), and milk persistency) were calculated. Breed, parity, interval from calving to first AI (CFI), lactation curve characteristics, milk production traits, moment of AI related to PT (before or after PT), calf status, month of AI, and month of calving were selected as independent variables for a model with SFI as a dependent variable. A multivariable logistic regression model was used with farm as a random effect. Overall SFI was 44%. The effect of parity on SFI depended on CFI. The first-parity cows had the greatest SFI (0.43) compared with other parities (0.32-0.39) at the same period of CFI before 60 d in milk (DIM), and cows in parity ≥5 had the least SFI (0.38-0.40) when AI was after 60 DIM. After 60 DIM, extending CFI did not improve SFI in the first-parity cows, but SFI was improved in multiparous cows. Holstein-Friesian cows had lesser SFI (0.37) compared with cross-breed cows (0.39-0.46). Twin and stillbirth calving reduced SFI (0.39) compared with a single female calf (0.45) or a male calf (0.43) calving. The SFI in different months of AI varied and depended on CFI. Cows that received AI before 60 DIM had a lesser SFI, especially in March, June, and July (0.18, 0.35, and 0.34, respectively). Artificial insemination before PT reduced SFI (0.39) in comparison with AI after PT (0.44). The effect of milk yield at the first-AI date on SFI varied depending on CFI. After 60 DIM at the same period of CFI, a high level of milk yield at the first-AI date reduced SFI. In conclusion, knowledge of the contribution of cow factors on SFI can be applied to support decision making on the moment of insemination of an individual cow in estrus.  相似文献   

2.
The objective was to examine milk production, health, and economic performance among Holstein heifers during first lactation on 3 commercial dairy farms in California. Heifers (n = 1905) were moved to the breeding group between 360 and 390 d of age and grouped retrospectively according to age at first calving (AFC) as low (< or =700 d), medium (701 to 750 d), and high (> or =751 d). Within farm, growing heifers were managed similarly, as were lactating primiparous cows, for the first 310 d in lactation. Heifers were fed to gain 0.70 to 0.80 kg/d from 4 mo of age to breeding, and 0.8 to 0.9 kg/d from breeding to 252 to 258 d of pregnancy. First calving at <700 d was associated with reduced yields of milk and milk components. Cows in the high age group produced more milk fat and true protein than medium and low cows. Incidence of stillbirths was highest for cows in the low group (19.8%), but stillbirths were also a concern for those calving at medium (16.1%) or high age groups (13.5%). Both low and high cows had lower conception rates at first postpartum AI, and abortions averaged 9.8% across groups. Days open and number of inseminations were lower for medium than low cows. Incidence of mastitis and lameness was lowest for cows in the medium group. Culling and mortality rates were not affected by AFC, but among those that died, cows in the low group tended to die earlier postpartum than cows in the high group. Heifers in the medium group had an adjusted income value numerically higher by 138.33 dollars and 98.81 dollars compared with those in the low and high groups, respectively. First calving at <700 d compromised first lactation yields of milk and milk components and impaired reproductive performance. However, extending AFC beyond 750 d did not improve lactation, reproduction, or health of primiparous cows. Although not preassigned to age groups before start of breeding, Holstein heifers managed as in this study had the highest economic return when calving between 23 and 24.5 mo of age.  相似文献   

3.
The objective of this study was to evaluate the economic performance of dairy cows managed with a voluntary waiting period (VWP) of 60 or 88 d. A secondary objective was estimating variation in cash flow under different input pricing scenarios through stochastic Monte Carlo simulations. Lactating Holstein cows from 3 commercial farms were blocked by parity group and total milk yield in their previous lactation and then randomly assigned to a VWP of 60 (VWP60; n = 1,352) or 88 d (VWP88; n = 1,359). All cows received timed-artificial insemination (TAI) for first service after synchronization of ovulation with the Double-Ovsynch protocol. For second and greater services, cows received artificial insemination (AI) after detection of estrus or the Ovsynch protocol initiated 32 ± 3 d after AI. Two analyses were performed: (1) cash flow per cow for the calving interval of the experimental lactation and (2) cash flow per slot occupied by each cow enrolled in the experiment for an 18-mo period after calving in the experimental lactation. Extending the VWP from 60 to 88 d delayed time to pregnancy during lactation (~20 d) and increased the risk of leaving the herd for multiparous cows (hazard ratio = 1.21). As a result, a smaller proportion of multiparous cows calved again and had a subsequent lactation (?6%). The shift in time to pregnancy combined with the herd exit dynamics resulted in longer lactation length for primiparous (22 d) but not multiparous cows. Longer lactations led to greater milk income over feed cost and a tendency for greater cash flow during the experimental lactation for primiparous but not multiparous cows in the VWP88 group. On the other hand, profitability per slot for the 18-mo period was numerically greater ($68 slot/18 mo) for primiparous cows but numerically reduced (?$85 slot/18 mo) for multiparous cows in the VWP88 treatment. For primiparous cows most of the difference in cash flow was explained by replacement cost, whereas for multiparous cows it was mostly explained by differences in replacement cost and income over feed cost. Under variable input pricing conditions generated through stochastic simulations, the longer VWP treatment always increased cash flow per 18 mo for primiparous and reduced cash flow for multiparous cows. In conclusion, extending the duration of the VWP from 60 to 88 d numerically increased profitability of primiparous cows and reduced profitability of multiparous cows. Such an effect depended mostly on the herd replacement dynamics and milk production efficiency.  相似文献   

4.
Drying-off, calving, and start of lactation are critical transition events for a dairy cow. As a consequence, most animal health issues occur during these periods. By extending the voluntary waiting period for first insemination after calving, calving interval (CInt) can be extended, with possible positive effects for fertility and health. Some cows might be better suited for an extended CInt than others, due to differences in milk yield level, lactation persistency, or health status, which would justify a customized CInt based on individual cow characteristics. This study aims to investigate 13 farms with customized CInt, with respect to calving to first service interval (CFSI), accomplished CInt, services per conception (SC), conception rate at first artificial insemination (CR1AI), peak yield, lactation persistency, 305-d yield, and effective lactation yield. In total, 4,858 complete lactations of Holstein Friesian cows between 2014 and 2019 from the 13 farms were grouped by parity (1 or 2+) and CFSI (CFSI class; CFSI-1 < 84; 84 ≤ CFSI-2 < 140; 140 ≤ CFSI-3 < 196; 196 ≤ CFSI-4 < 252, CFSI-5 ≥ 252 d) or CInt (CInt class; CInt-1 < 364; 364 ≤ CInt-2 < 420; 420 ≤ CInt-3 < 476; 476 ≤ CInt-4 < 532, CInt-5 ≥ 532 d). Cow inseminations, available for 11 out of 13 farms (3,597 complete lactations), were grouped by parity (1 and 2+) and CFSI class or CInt class. The fertility and milk production characteristics were analyzed with generalized and general linear mixed models. The CFSI class was not associated with SC, but extended CInt class was associated with increased SC (CInt-1–5; 1.11–3.70 SC). More than 50% of cows in the CFSI class <84 d ended up in longer than expected CInt (>364 d), showing that these cows were not able to conceive for the desired CInt. More than 50% of cows in CInt classes 3 and higher (CInt ≥ 420 d) had an earlier first insemination before successful insemination (CFSI class 1; <196 d), showing that these extended CInt classes consisted of both cows with an extended waiting period for first insemination and cows that failed to conceive at earlier insemination(s). On most farms, lactation persistency was greatest in CInt class 1 (<364 d), probably related to the low peak yield in this class. When this shortest CInt class was excluded, persistency increased with extended CInt classes on most farms. Although at the majority of farms 305-d yield was greater in CInt ≥ 532 d, effective lactation yield at most farms was greatest in CInt from 364 to 531 d, especially for multiparous cows. Based on the results of this study, a CInt between 364 and 531 days seems most optimal for milk production, when high-yielding cows were selected.  相似文献   

5.
This study was designed to contribute to the understanding of the relationships between energy balance (EB) in early lactation [4 to 21 d in milk (DIM)] and fertility traits [interval to start of luteal activity (SLA), interval to first observed heat (FOH), and conception to first artificial insemination (AI)], and their associated relationships with cow performance and blood metabolites between 4 to 150 DIM. Individual cow data (488 primiparous and 1,020 multiparous lactations) from 27 experiments was analyzed. Data on cow performance, EB (on a metabolizable energy basis), and fertility traits were available for all cows, whereas milk progesterone data (to determine SLA) and periodic blood metabolite data were available for 1,042 and 1,055 lactations, respectively. Data from primiparous and multiparous cows were analyzed separately, with the data sets for the 2 parity groups divided into quartiles (Q1–Q4) according to the average EB during 4 to 21 DIM (EB range for Q1 to Q4: primiparous, ?120 to ?49, ?49 to ?24, ?24 to ?3, and ?3 to 92 MJ/d, respectively: multiparous, ?191 to ?79, ?79 to ?48, ?48 to ?22, and ?22 to 93 MJ/d, respectively). Differences between EB quartiles for production and fertility traits were compared. In early lactation (4 to 21 DIM), moving from Q1 to Q4 mean DMI and metabolizable energy intake increased whereas mean ECM decreased. During the same period, moving from Q1 to Q4 milk fat content, milk fat-to-protein ratio, and plasma nonesterified fatty acid and β-hydroxybutyrate concentrations decreased, whereas milk protein content and plasma glucose concentrations increased in both primiparous and multiparous cows. When examined over the entire experimental period (4 to 150 DIM), many of the trends in intakes and milk production remained, although the magnitude of the difference between quartiles was much reduced, whereas milk fat content did not differ between quartiles in primiparous cows. The percentage of cows with FOH before 42 DIM increased from Q1 to Q4 (from 46 to 72% in primiparous cows, and from 41 to 58% in multiparous cows). Interval from calving to SLA and to FOH decreased with increasing EB during 4 to 21 DIM, with these occurring 9.8 and 10.2 d earlier, respectively, in Q4 compared with Q1 (primiparous cows), and 7.4 and 5.9 d earlier, respectively, in Q4 compared with Q1 (multiparous cows). For each 10 MJ/d decrease in mean EB during 4 to 21 DIM, FOH was delayed by 1.2 and 0.8 d in primiparous and multiparous cows, respectively. However, neither days to first AI nor the percentage of cows that conceived to first AI were affected by daily EB during 4 to 21 DIM in either primiparous or multiparous cows, and this is likely to reflect a return to a less metabolically stressed status at the time of AI. These results demonstrate that interval from calving to SLA and to FOH were reduced with increasing EB in early lactation, whereas early lactation EB had no effect on conception to the first service.  相似文献   

6.
No reports exist on consequences of in vitro production (IVP) of embryos for the postnatal development of the calf or on postparturient function of the dam of the calf. Three hypotheses were evaluated: calves born as a result of transfer of an IVP embryo have reduced neonatal survival and altered postnatal growth, fertility, and milk yield compared with artificial insemination (AI) calves; cows giving birth to IVP calves have lower milk yield and fertility and higher incidence of postparturient disease than cows giving birth to AI calves; and the medium used for IVP affects the incidence of developmental abnormalities. In the first experiment, calves were produced by AI using conventional semen or by embryo transfer (ET) using a fresh or vitrified embryo produced in vitro with X-sorted semen. Gestation length was longer for cows receiving a vitrified embryo than for cows receiving a fresh embryo or AI. The percentage of dams experiencing calving difficulty was higher for ET than AI. We observed a tendency for incidence of retained placenta to be higher for ET than AI but found no significant effect of treatment on incidence of prolapse or metritis, pregnancy rate at first service, services per conception, or any measured characteristic of milk production in the subsequent lactation. Among Holstein heifers produced by AI or ET, treatment had no effect on birth weight but the variance tended to be greater in the ET groups. More Holstein heifer calves tended to be born dead, died, or were euthanized within the first 20 d of life for the ET groups than for AI. Similarly, the proportion of Holstein heifer calves that either died or were culled for poor health after 20 d of age was greater for the ET groups than for AI. We observed no effect of ET compared with AI on age at first service or on the percentage of heifers pregnant at first service, calf growth, or milk yield or composition in the first 120 d in milk of the first lactation. In a second experiment, embryos were produced using 1 of 2 culture media: synthetic oviductal fluid–bovine embryo 1 (SOF-BE1) or Block-Bonilla-Hansen 7 (BBH7). We detected no difference between cows receiving an SOF-BE1 or BBH7 embryo in gestation length, the percentage of cows in which parturition was induced, or the percentage of cows that experienced calving difficulty, retained placenta, prolapse, or metritis. Among Holstein heifers, birth weight was higher for BBH7 calves than for SOF-BE1 calves. Treatment had no significant effect on calf death. Results indicate that calves born as a result of IVP-ET are more likely to experience alterations in birth weight and increased death in early life but that there were few consequences to the dam of carrying a fetus derived by IVP-ET.  相似文献   

7.
The objective of the present study was to evaluate the effects of postpartum oral calcium supplementation on milk yield, energy-corrected milk yield, milk fat concentration, milk protein concentration, and somatic cell count linear score across the first 3 monthly tests postpartum, peak milk yield, risk of pregnancy at first service, and hazard of pregnancy by 150 d in milk on 1,129 multiparous Jersey and Jersey × Holstein crossbreed cows from 2 commercial dairies. After calving, cows were systematically assigned to control (no oral calcium supplementation; n = 567) or oral calcium supplementation at 0 and 1 d in milk (oral Ca; 50 to 60 g of calcium as boluses; n = 562). Monthly test milk yield, composition, and somatic cell count information was obtained from the Dairy Herd Improvement Association. Herd records were used for reproductive data. Statistical analysis was conducted using generalized multiple linear, Poisson, and Cox's hazard regressions. Treatment effects were evaluated considering cow-level information available at parturition (parity, breed, previous lactation milk yield, previous lactation length, dry period length, gestation length, body condition, and locomotion score at calving, calving ease, and calf sex). In addition, for a subset of cows serum calcium concentration before treatment administration was evaluated (n = 756). Overall, oral calcium supplementation did not affect the evaluated productive and reproductive variables. However, effects conditional to previous lactation length and calving locomotion score were observed. Milk yield and energy-corrected milk yield across the first 3 monthly tests were 1.8 kg/d higher for supplemented cows with a previous lactation length within the fourth quartile, compared with control cows on the same quartile. Energy-corrected milk yield tended to be 1.1 kg/d lower for supplemented cows with a previous lactation length within the first quartile, compared with control counterparts. Peak milk yield tended to be 1.6 kg higher for supplemented cows with a calving locomotion score ≥2, compared with control cows with the same locomotion score. Treatment effects were not conditional to serum calcium concentration before treatment administration. Our results suggest that postpartum oral calcium supplementation effects are conditional to cow-level factors such as previous lactation length and calving locomotion score in multiparous Jersey and Jersey × Holstein crossbreed cows.  相似文献   

8.
The objective was to examine the associations of peripartum concentrations of nonesterified fatty acids (NEFA), β-hydroxybutyrate (BHBA), and calcium with milk production in early lactation and pregnancy at the first artificial insemination (AI) across different management systems. Fifty-five Holstein freestall dairy herds located across the United States and Canada were visited weekly for blood sample collection from 2,365 cows. For each week of sampling (from wk -1 through wk 3 relative to calving) and for each metabolite, serum concentrations were dichotomized at various thresholds to identify the thresholds with the best negative associations with milk production and pregnancy at first AI. These thresholds were used to categorize the serum concentrations into higher and lower risk categories. Repeated-measures ANOVA and multivariable logistic regression were conducted for milk production and pregnancy at the first AI data, respectively, considering cow as the experimental unit and herd as a random effect. In the week before calving, serum NEFA ≥ 0.5 mEq/L, BHBA ≥ 600 μmol/L, and calcium ≤ 2.1 mmol/L were associated with 1.6 to 3.2 kg/d milk loss across the first 4 Dairy Herd Improvement Association (DHIA) milk tests. High levels of NEFA and BHBA in wk 1 and 2 after calving (≥ 0.7 and ≥ 1.0 mEq/L for NEFA, and ≥ 1,400 and ≥ 1,200 μmol/L for BHBA), and low levels of calcium (≤ 2.1 mmol/L) in wk 1, 2 and 3 after calving were associated with milk loss at the first DHIA milk test. Serum concentrations of NEFA and BHBA were not associated with pregnancy at first AI in any sampling week, whereas calcium <2.2 to 2.4 mmol/L from wk 1 through wk 3 postpartum were associated with reduced pregnancy at first AI. In conclusion, high serum concentrations of NEFA, BHBA, and low concentrations of calcium around parturition were associated with early lactation milk loss, and low calcium concentration around parturition was associated with impaired early lactation reproduction.  相似文献   

9.
《Journal of dairy science》2021,104(9):9703-9714
Supplementation of Ca products to cows after calving is common in calving protocols. This study evaluated the effect of a Ca-energy drink voluntarily consumed on milk yield and composition, odds to reach a next lactation, and calving interval. This prospective randomized study included a blinded placebo and was conducted in 10 commercial dairy farms that included 504 Holstein dairy cows. Cows were blocked within farm by calving sequence and parity (primiparous or multiparous). Within each block of 2 animals, cows were randomly assigned to 1 of 2 treatments: a Ca-energy supplement drink (CAE, n = 255) providing 45 g of Ca and other components (dextrose, lactose, protein, fat, other minerals and vitamins), a placebo (i.e., 100 g of cellulose and 20 g of dextrose; CON, n = 249), both strictly offered to the animals for voluntary consumption. Treatments were offered mixed in 20 L of water within 3 h after calving. Milk data were analyzed using 2 approaches. The first, most classical, evaluated the effect of the treatments on observed milk data, whereas the second approach evaluated the effect on milk residuals (i.e., the difference between observed milk data and a prediction made by a herd test-day model). Eighty-one percent of the CAE cows fully consumed the treatment, whereas only 50% of CON cows did. No differences were detected for observed milk yield, nor for composition in multiparous cows. The only production effect observed on multiparous cows was a treatment by time interaction for milk fat yield, reflecting greater yield for CAE cows between 100 and 150 d in milk only. However, primiparous cows receiving CAE had increased milk (+0.8 kg/d) and component yields (i.e., +40 g/d of protein) compared with CON cows. These effects were more evident when milk and milk components residuals data were analyzed (i.e., +1.5 kg/d for milk yield and +57 g/d of protein). This was achieved with a herd test-day model that allowed milk and milk components data to be adjusted for environmental and genetic factors (i.e., farm effect, time effect, age at calving, parity, stage of lactation, breeding value). The treatment had no effect on the probability of reaching the next lactation (i.e., 72% of CAE cows had a next calving against 69% in CON). Primiparous cows receiving CAE had a longer calving interval compared with CON cows. At 400 d after the application of the treatment, 65% of CAE primiparous cows had a next calving, whereas 81% of CON primiparous cows had calved already. The supplementation of the tested oral Ca-energy solution at calving did not increase the probability to reach a next lactation for neither primiparous or multiparous, but positively influenced milk yield and milk component yields for primiparous.  相似文献   

10.
The objective of this study was to investigate the genetic relationship between body condition score (BCS) and reproduction traits for first-parity Canadian Ayrshire and Holstein cows. Body condition scores were collected by field staff several times over the lactation in herds from Québec, and reproduction records (including both fertility and calving traits) were extracted from the official database used for the Canadian genetic evaluation of those herds. For each breed, six 2-trait animal models were run; they included random regressions that allowed the estimation of genetic correlations between BCS over the lactation and reproduction traits that are measured as a single lactation record. Analyses were undertaken on data from 108 Ayrshire herds and 342 Holstein herds. Average daily heritabilities of BCS were close to 0.13 for both breeds; these relatively low estimates might be explained by the high variability among herds and BCS evaluators. Genetic correlations between BCS and interval fertility traits (days from calving to first service, days from first service to conception, and days open) were negative and ranged between −0.77 and −0.58 for Ayrshire and between −0.31 and −0.03 for Holstein. Genetic correlations between BCS and 56-d nonreturn rate at first insemination were positive and moderate. The trends of these genetic correlations over the lactation suggest that a genetically low BCS in early lactation would increase the number of days that the primiparous cow was not pregnant and would decrease the chances of the primiparous cow to conceive at first service. Genetic correlations between BCS and calving traits were generally the strongest at calving and decreased with increasing days in milk. The correlation between BCS at calving and maternal calving ease was 0.21 for Holstein and 0.31 for Ayrshire and emphasized the relationship between fat cows around calving and dystocia. Genetic correlations between calving traits and BCS during the subsequent lactation were moderate and favorable, indicating that primiparous cows with a genetically high BCS over the lactation would have a greater chance of producing a calf that survived (maternal calf survival) and would transmit the genes that allowed the calf to be born more easily (maternal calving ease) and to survive (direct calving ease).  相似文献   

11.
This experiment evaluated the reproductive performance, herd exit dynamics, and lactation performance of dairy cows managed with a voluntary waiting period (VWP) of 60 or 88 d. Secondary objectives were evaluating VWP effect on cyclicity status, uterine health, systemic inflammation, and body condition score (BCS) before first service. Lactating Holstein cows from 3 commercial farms in New York State cows were blocked by parity group and total milk yield in their previous lactation and then randomly assigned to VWP of 60 (VWP60; n = 1,352) or 88 (VWP88; n = 1,359) days in milk (DIM). All cows received the Double-Ovsynch protocol (GnRH-7 d-PGF-3 d-GnRH-7 d-GnRH-7 d-PGF-56 h-GnRH-16 to 20 h-timed artificial insemination; TAI) for synchronization of ovulation and TAI. For second and greater artificial insemination (AI), cows received AI after detection of estrus or the Ovsynch protocol (GnRH-7 d-PGF-56 h-GnRH-16 to 20 h-TAI) initiated 32 ± 3 d after AI for cows not re-inseminated at detected estrus. Cyclicity status (progesterone concentration), uterine health (vaginal discharge and uterine cytology), BCS, and systemic inflammation (haptoglobin concentration) were evaluated at baseline (33 ± 3 DIM for both treatments), beginning of the Double-Ovsynch protocol, and 10 d before TAI. Effects of treatments were assessed with multivariable statistical methods relevant for each outcome variable. Extending duration of VWP from 60 to 88 DIM increased pregnancies per AI (P/AI) to first service (VWP60 = 41%; VWP88 = 47%). Nonetheless, the greatest benefit of extending VWP on first-service P/AI was for primiparous cows (VWP60 = 46%; VWP88 = 55%), as P/AI did not differ within the multiparous cow group (VWP60 = 36%; VWP88 = 40%). Physiological status more conducive to pregnancy—characterized by improved uterine health, greater BCS, reduced systemic inflammation, and to a lesser extent more time to resume ovarian cyclicity—explained the increment in P/AI to first service. Our data also indicated that despite having greater P/AI to first service, cows with the longer VWP had delayed time to pregnancy during lactation (hazard ratio = 0.72; 95% confidence interval 0.69–0.98) and greater risk of leaving the herd, particularly for multiparous cows (hazard ratio = 1.34; 95% confidence interval 1.23–1.47). This shift in pregnancy timing led to an overall extension of the lactation length (+13 d), which resulted in greater total milk yield per lactation (+491 kg) but not greater milk yield per day of lactation. In conclusion, data from this experiment highlight the importance of considering the complex interactions between reproductive performance, herd exit dynamics, and lactation performance as well as the effects of parity at the time of defining the duration of the VWP for lactating dairy cows.  相似文献   

12.
Metritis, a common transition disease in dairy cows, reduces milk production during the duration of the disease. To our knowledge, no work has investigated the short-term effects of metritis on feed intake and the long-term consequences on milk yield and risk of culling. The objectives were to determine the effect of metritis on 305-d lactation curves, dry matter intake (DMI), reproduction, and the probability of being culled. Identifying differences in response to metritis between primiparous and multiparous cows was of interest. Milk records were collected twice daily from Holstein cows diagnosed with puerperal metritis (11 primiparous and 16 multiparous) or classified as healthy (14 primiparous and 43 multiparous) during the first 3 wk after calving. Metritic cows were treated at the discretion of the herd veterinarian. Lactation curves of healthy and metritic cows were compared using a mixed model with a Wilmink function. Differences in DMI, days open, and the number of services per conception were assessed using mixed models. The probabilities that cows with and without metritis were not bred, were bred but never confirmed pregnant, or were culled were compared using Fisher's exact tests. Primiparous and multiparous animals were assessed separately. Multiparous cows with metritis produced less milk (35.1 ± 1.5 vs. 39.2 ± 1.0 kg/d), ate less during the 3 wk after calving (12.2 ± 1.2 vs.14.0 ± 0.8 kg/d), and were more likely to be culled (50.0%) than healthy cows (20.9%). The decision to cull was likely influenced by the lower milk yield in early lactation as a result of metritis; the decision to cull was made early, as 7 of the 8 culled metritic cows were not bred. No differences were found in any measurement between primiparous cows with and without metritis. These results indicate that metritis in early lactation has long-term effects on multiparous cows but not primiparous cows.  相似文献   

13.
The effect of monensin on milk production was evaluated in 58 lactating Holstein cows (48 multiparous; 10 primiparous) grazing a mixed-alfalfa pasture and supplemented with a partial mixed ration in a completely randomized design with repeated measurements. Cows were paired by calving date, lactation number, previous lactation milk production, body weight, and body condition score and were assigned to one of 2 treatments: control or monensin. Cows on the monensin treatment received 2 monensin controlled-release capsules (335 mg/d for 90 d), one 30 d before the expecting calving date and the other 60 d after calving. Short-term (0 to 150 d in milk) and long-term (305-d adjusted lactation) effects of monensin were evaluated. Pasture (measured by difference between pre- and postgrazing pasture mass), supplements, and total dry matter intake did not differ between treatments and averaged 8.7, 14.1, and 22.9 kg/d, respectively. In the short-term, monensin increased milk production (27.7 vs. 26.6 kg/d) and milk protein yield (0.890 vs. 0.860 kg/d); milk fat yield was not affected (0.959 kg/d). Monensin decreased milk fat content (3.51 vs. 3.60%) with no changes in milk protein content (3.25%). In the long term, milk production and milk protein yield were also increased by monensin: 214 and 7 kg, respectively. Monensin reduced the loss of body condition score and increased percentage of pregnancy at first service (44.8 vs. 20.7%). Monensin improves production and reproduction performance of dairy cows grazing a mixed-alfalfa pasture and supplemented with a partial mixed ration.  相似文献   

14.
We evaluated the effect of shortening the dry period (DP) on milk and energy-corrected milk (ECM) yields, milk components, colostrum quality, metabolic status, and reproductive parameters. Primiparous (n = 372) and multiparous (n = 400) Israeli Holstein cows from 5 commercial dairy herds were subjected to a 60-d or 40-d DP. Cows within each herd were paired according to milk production, age, days in milk, and expected calving. Analysis of the data from all cows, irrespective of age, revealed significant differences in milk and ECM yields that favored the 60-d DP, with a prominent effect in 2 of 5 examined herds. In primiparous cows, milk and ECM yields were similar between groups in 4 of 5 farms. In multiparous cows undergoing a 60-d (vs. 40-d) DP, milk and ECM yields were higher in 3 herds. These differences could not be explained by milk and ECM yields in cows diagnosed with metritis, ketosis, and mastitis (defined by a somatic cell count threshold of 250,000 cell/mL), distribution of infected and noninfected cows, or new infections during DP and after calving. Including the milk and ECM yields from an average of 19.55 d from the previous lactation revealed higher milk and ECM yields for 40-d (vs. 60-d) DP cows in all herds. Analyzing 2 consecutive lactations revealed similar milk and ECM yields between groups in 4 out of 5 herds. In 1 herd, yields were higher in the 40-d compared with the 60-d DP group. One week after calving, the nonesterified fatty acid concentrations of 40-d DP cows were significantly lower than those of 60-d DP cows, indicating better postpartum energy balance. Colostrum quality, measured as IgG concentration, did not differ between the 2 DP groups. Cows assigned to 40-d DP had better reproductive performance, as reflected by fewer days to first insemination, a lower proportion with >90 d to first insemination, and fewer days to pregnancy. With respect to primiparous cows, a short DP increased conception rate after first artificial insemination and decreased the proportion of nonpregnant cows after 150 d in milk. In light of these findings, we suggest that a short DP be applied for its economic and physiological benefits. This is highly relevant to dairy herds located in regions such as Israel, Spain, and Florida that suffer from reduced milk production during the hot season.  相似文献   

15.
Records representing 19,266 Holstein cows from Arizona DHIA data over a 5-yr period were analyzed to determine the effects of season and lactation number on milk production and reproduction. Seasons were winter (December, January, and February), spring (March, April, and May), summer (June, July, and August), and fall (September, October, and November). Traits analyzed by least squares ANOVA were 305-d FCM, complete lactation milk, calving interval, and services per conception. All sources of variation were significant except the interaction between lactation number and season of calving for complete lactation milk. Milk production was depressed for cows calving in summer and fall. First lactation cows had lowest milk production, and highest production occurred in either lactation 4 or 5. Cows calving in spring and summer had reduced reproductive performance, as measured by calving interval and services per conception. First lactation cows had lowest values for both reproductive traits. Previous days dry was negatively related to milk production for spring calvings but was positively related for all other seasons. Cows with higher milk production had reduced reproductive performance. Partial regression coefficients for calving interval and services per conception were 12 d and .25 services per conception per 1000 kg of 305-d FCM, respectively. Despite the negative effects of thermal stress, milk production and fertility in this study were not depressed as severely as in previous research reported from Arizona. Calving schedules may be adjusted to minimize the adverse effect of heat stress.  相似文献   

16.
《Journal of dairy science》2019,102(7):6587-6594
An inflammatory response is induced in the reproductive tract by deposition of semen during natural mating. This response might facilitate establishment and maintenance of pregnancy and alter the phenotype of the offspring by modifying the microenvironment of the reproductive tract. Here, we hypothesized that intrauterine infusion of 0.5 mL of seminal plasma at the time of artificial insemination (AI) in first-service lactating Holstein cows will improve pregnancy success after insemination. Cows were inseminated (511 primiparous cows inseminated with X-sorted semen, 554 multiparous cows inseminated with X-sorted semen, and 627 multiparous cows inseminated with conventional semen) using the Double-Ovsynch protocol. Cows were randomly assigned to receive intrauterine infusion of either 0.5 mL of seminal plasma or saline immediately after AI. There was no overall effect of seminal plasma infusion on the percentage of inseminated cows diagnosed pregnant at d 32 or 60 after AI, pregnancy loss, or percent of inseminated cows calving. If cows were inseminated with conventional semen, seminal plasma reduced pregnancies at d 32 and tended to reduce calvings. There was no effect of seminal plasma if cows were inseminated with X-sorted semen. Seminal plasma infusion increased the birth weight of heifer calves born using X-sorted semen but not conventional semen. These results do not support a beneficial effect of seminal plasma on pregnancy success after AI, but exposure to seminal plasma may program fetal development to affect phenotype at birth.  相似文献   

17.
《Journal of dairy science》2021,104(11):11699-11714
Objectives were to determine the effects of 3 levels of dietary cation-anion difference (DCAD) fed prepartum to nulliparous cows on productive and reproductive performance. We enrolled 132 pregnant nulliparous Holstein cows at 250 (248–253) d of gestation in a randomized block design. Cows were blocked by genomic merit of energy-corrected milk yield and assigned randomly to diets varying in DCAD, +200 (P200; n = 43), −50 (N50; n = 45), or −150 (N150; n = 44) mEq/kg of dry matter (DM). Dietary treatments were fed during the last 22 d of gestation and, after calving, postpartum cows received the same lactation diet. Productive performance was evaluated for the first 14 wk of lactation, and reproduction was assessed until 305 d postpartum. Intake of DM prepartum decreased linearly (results presented in sequence as least squares means ± standard error of the mean, P200 vs. N50 vs. N150) with a reduction in DCAD (9.0 vs. 8.9 vs. 8.4 ± 0.1 kg/d), which resulted in linear decreases in net energy balance (0.34 vs. 0.20 vs. −0.36 ± 0.20 Mcal/d), body weight change (1.1 vs. 0.8 vs. 0.3 ± 0.1 kg/d), and mean body weight (652 vs. 649 vs. 643 ± 2 kg) prepartum. Treatment did not affect yield of colostrum (6.3 vs. 5.8 vs. 5.1 ± 0.6 kg) or the contents or yields of fat, protein, lactose, IgG, Ca, or Mg in colostrum. Intake of DM (19.4 vs. 19.2 vs. 19.0 ± 0.2 kg/d), yields of milk (36.6 vs. 36.7 vs. 35.8 ± 0.6 kg/d) or energy-corrected milk (36.7 vs. 36.3 vs. 35.9 ± 0.5 kg/d), feed efficiency (1.93 vs. 1.92 vs. 1.93 ± 0.03 kg of energy-corrected milk per kilogram of DM intake), and content and yield of milk components did not differ among treatments during the first 14 wk of lactation. Prepartum DCAD did not affect the cumulative milk yield by 305 d of lactation (9,653 vs. 10,005 vs. 9,918 ± 196 kg). Of the 132 cows, 40 P200, 45 N50, and 43 N150 received at least 1 artificial insemination (AI), and treatment did not affect pregnancy per AI at first (32.5 vs. 35.6 vs. 37.2%) or all AI (30.6 vs. 33.9 vs. 40.2%), although reducing the DCAD increased the proportion of cows pregnant by 305 d postpartum (76.7 vs. 88.9 vs. 93.2%) without altering the rate of pregnancy. Collectively, manipulating the DCAD of prepartum diets, from +200 to −150 mEq/kg of DM, fed to late gestation nulliparous cows did not affect subsequent lactation productive performance, but may have provided some benefit to reproduction, which warrants further confirmation.  相似文献   

18.
Use of sexed semen for artificial insemination of US Holstein heifers (1.3 million breedings) and cows (10.8 million breedings) in Dairy Herd Improvement herds was characterized by breeding year, parity, service number, region, herd size, and herd milk yield. Sexed semen was used for 1.4, 9.5, and 17.8% of all reported breedings for 2006, 2007, and 2008, respectively, for heifers, and for 0.1, 0.2, and 0.4%, respectively, for cows. For 2008 sexed semen breedings, 80.5 and 68.6% of use was for first services of heifers and cows, respectively. For cows, 63.1% of 2008 sexed semen use was for first parity. Mean sexed semen use within herd was the greatest for heifers in the Southwest (36.2%) and for cows in the Mideast (1.3%). Mean sexed semen use increased for heifers but changed little for cows as either herd size or herd mean milk yield increased. Availability of sexed semen was examined for Holstein bulls in active AI service; of 700 bulls born after 1993, 37% had sexed semen marketed by mid August 2009. Active AI bulls with marketed sexed semen were superior to average active AI bulls for evaluations of yield traits, productive life, somatic cell score, daughter pregnancy rate, service-sire calving ease, service-sire stillbirth, final score, sire conception rate, and lifetime net merit. The effect of sexed semen use on conception rate, calf sex, dystocia, and stillbirth also was examined for heifers and cows. Mean conception rate for heifers was 56% for conventional and 39% for sexed semen; corresponding conception rates for cows were 30 and 25%. For single births from sexed semen breedings, around 90% were female. Dystocia and stillbirth were more frequent for heifers (6.0 and 10.4%, respectively, for conventional semen; 4.3 and 11.3%, respectively, for sexed semen) than for cows (2.5 and 3.6%, respectively, for conventional semen; 0.9 and 2.7%, respectively, for sexed semen). Difficult births declined by 28% for heifers and 64% for cows with sexed semen use. Stillbirths were more prevalent for twin births except for sexed semen heifer breedings. Stillbirths of single male calves of heifers were more frequent for breedings with sexed semen (15.6%) than conventional semen (10.8%); a comparable difference was not observed for cows, for which stillbirth frequency of single male calves even decreased (2.6 vs. 3.6%). Overall stillbirth frequency was reduced by sexed semen use for cows but not for heifers.  相似文献   

19.
《Journal of dairy science》2022,105(2):1589-1602
The objective of this observational study was to evaluate the association of management-related factors in dry cows and colostrum quantity and quality in Holstein cows on a large commercial dairy farm. This study was conducted from January 2018 to December 2020 on a commercial dairy farm in Germany, milking approximately 2,500 Holstein cows. Dairy personnel recorded colostrum quantity (n = 7,567) and evaluated colostrum quality in a subsample of animals (n = 2,600) using a digital Brix refractometer. Generalized linear mixed models were constructed to evaluate the association of management-related factors and colostrum quantity and quality. Models were run separately for primiparous or multiparous cows. The outcome variable was either colostrum quantity (kg) or quality (% Brix). Average colostrum quantity was 4.0 ± 2.5 kg, 5.1 ± 3.4 kg, and 5.5 ± 3.5 kg for cows in lactation 1, 2, and ≥3, respectively. In primiparous cows (n = 2,351), colostrum quantity was affected by month of calving (greatest in April = 4.1 kg, and lowest in November = 3.2 kg), sex of the calf (female singleton = 3.50 ± 0.26 kg; male singleton = 3.76 ± 0.27 kg; twins = 2.97 ± 0.66 kg), stillbirth (stillbirth = 3.14 ± 0.39 kg; no stillbirth = 3.68 ± 0.31 kg). In multiparous cows (n = 5,216), colostrum quantity was affected by month of calving (greatest in May = 5.5 kg, and lowest in October = 3.8 kg), calving ease (calving ease 0 = 4.23 ± 0.26 kg; score 1 = 4.77 ± 0.21 kg; score 2 = 4.98 ± 0.22 kg; score 3 = 5.30 ± 0.22 kg), sex of the calf (female singleton = 4.42 ± 0.21 kg; male singleton = 5.00 ± 0.21 kg; twins = 5.03 ± 0.30 kg), stillbirth (stillbirth = 4.24 ± 0.38 kg; no stillbirth = 5.39 ± 0.11 kg), milk yield in previous lactation (+0.1 kg increase for 1,000 kg more milk yield in previous lactation), days spent in the far-off group (0.05 ± 0.003 kg for every day), and days in the close-up pen (0.06 ± 0.010 kg for every day). Average colostrum quality was 25.1 ± 3.4% Brix, 24.7 ± 3.3% Brix, and 27.6 ± 4.4% Brix for cows in lactation 1, 2, and ≥3, respectively. In primiparous cows (n = 817), colostrum quality was affected only by month of calving. Colostrum quality in primiparous cows was greatest in December (26.8% Brix) and lowest in August (23.9% Brix). In multiparous cows (n = 1,783), colostrum quality was affected by parity (lactation 2 = 25.2 ± 2.7% Brix; lactation 3+ = 27.9 ± 2.7% Brix), month of calving (greatest in February = 27.5% Brix, and lowest in August = 25.7% Brix), milk yield in previous lactation, and colostrum quantity. We observed a seasonal pattern for colostrum quantity and quality. Future intervention studies using multiple farms need to elucidate whether management of the photoperiod or length of exposure to close-up diets, or both, can help to optimize colostrum production.  相似文献   

20.
Brown Swiss × Holstein crossbred cows and pure Holstein cows were compared in a designed experiment. All cows were housed in a freestall barn at the experimental station of the federal state of Saxony-Anhalt, Germany, and calved from July 2005 to August 2008. Brown Swiss × Holstein crossbred cows were mated to Holstein AI bulls for first calving and mated to Fleckvieh artificial insemination (AI) bulls for second and third calvings. Pure Holstein cows were consistently mated to Holstein AI bulls. At first calving, Holstein-sired calves from Brown Swiss × Holstein crossbred dams (282 d) had longer gestation length than Holstein-sired calves from Holstein dams (280 d). For second and third calvings, gestation length was significantly longer for Fleckvieh-sired calves from Brown Swiss × Holstein crossbred dams (284 d) than for Holstein-sired calves from Holstein dams (278 d). Holstein-sired calves from Brown Swiss × Holstein crossbred dams (43 kg) and Holstein-sired calves from pure Holstein dams (42 kg) were not significantly different for calf weight at birth for first calving. For second and third calvings, Fleckvieh-sired calves from Brown Swiss × Holstein crossbred dams (50 kg) had significantly heavier calf weight at birth than Holstein-sired calves from pure Holstein dams (44 kg). For calving difficulty and stillbirth, Brown Swiss × Holstein crossbred cows were not different from pure Holstein cows at first calving or at second and third calving. Brown Swiss × Holstein crossbred cows (71 d) were not significantly different from pure Holstein cows (75 d) for days to first breeding during first lactation; however, Brown Swiss × Holstein crossbred cows (81 d) had significantly fewer days to first breeding than pure Holstein cows (89 d) during second lactation, and the crossbred cows (85 d) tended to have fewer days to first breeding than pure Holstein cows (92 d) during third lactation. For days open, Brown Swiss × Holstein crossbred cows were not significantly different than pure Holstein cows during any of the first 3 lactations. For body weight, Brown Swiss × Holstein crossbred cows were significantly heavier than pure Holstein cows during first lactation (621 kg versus 594 kg) and second lactation (678 kg versus 656 kg). Also, Brown Swiss × Holstein crossbred cows (18.20 mm) had significantly more backfat thickness than pure Holstein cows (15.81 mm) during first lactation. Brown Swiss × Holstein crossbred cows (48 cm) had significantly greater chest width than pure Holstein cows (46 cm). Furthermore, Brown Swiss × Holstein crossbred cows had significantly longer front heel walls (5.2 cm versus 5.0 cm), significantly longer rear heel walls (4.2 cm versus 4.0 cm), and significantly more depth of the front heel (4.4 cm vs. 4.1 cm) than pure Holstein cows. This study has shown that F1 of Brown Swiss × Holstein cows are competitive with pure Holstein cows for all traits analyzed here. For fertility, crossbred Brown Swiss × Holstein cows exhibited fewer days to first breeding during second lactation than pure Holstein cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号