首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Environmental concerns with P of animal origin polluting surface waters are leading to legal incentives aimed at reducing the dietary P content of dairy cow rations to the lowest possible level that does not negatively affect health and productivity. The objective of the present study was to determine the effect of feeding rations with low dietary P content in late gestation on the Ca homeostasis of the periparturient dairy cow. Eighteen multiparous dairy cows were either fed a P-deficient (0.15% P in dry matter antepartum and 0.20% P in dry matter postpartum) but otherwise balanced ration or a control ration with adequate P content (0.28% P in dry matter antepartum and 0.44% P in dry matter postpartum) during the last 4 wk of gestation until d 10 postpartum. Blood was obtained before initiation of P-deprivation (baseline) and ?10, ?2, +1, +3, and +10 d relative to parturition to be analyzed for plasma concentrations of Ca [Ca] and inorganic phosphate [Pi]. In addition, plasma concentrations of parathyroid hormone [PTH], the bone resorption marker CrossLaps [CTX], 25-hydroxyvitamin D, and 1,25-dihydroxyvitamin D were determined in a subset of samples. Feeding a P-deficient diet for 4 wk antepartum positively affected the Ca homeostasis of periparturient cows. Clinical hypocalcemia occurred in 3/9 control and 0/9 P-deprived cows. [Calcium], [PTH], and plasma concentrations of vitamin D metabolites did not differ between groups until parturition, whereas [Pi] was decreased and [CTX] significantly increased in P-deprived animals. At parturition [PTH] was significantly greater in control cows compared with P-depleted cows. The P-deprived cows had significantly higher [Ca] than control cows on d +1 (2.46 ± 0.11 vs. 2.27 ± 0.41 mmol/L) and +2 (2.61 ± 0.13 vs. 2.35 ± 0.25 mmol/L). Plasma [CTX] was significantly higher in P-deprived than in control cows on d +2. Bone resorption and the typical increase in 1,25-dihydroxyvitamin D in periparturient P-deprived cows seemed to occur despite the smaller rise of [PTH], suggesting either greatly increased sensitivity to PTH or bone mobilization independent of PTH. Future studies must explore potentially negative effects of P-deprivation antepartum on health and productivity of the dairy cow in the following lactation.  相似文献   

2.
Our objective was to compare the effects of different prepartum dietary phosphorus concentrations on periparturient metabolism and performance. Forty-two late pregnant multiparous Holstein cows were fed 0.21, 0.31, or 0.44% P (dry basis) for 4 wk before expected calving. After parturition, all cows were fed a common lactation diet (0.40% P). In the prepartum period, cows fed 0.21% P had lower blood serum P concentrations compared with cows fed 0.31 or 0.44% P. However, serum P concentrations of all cows were within the normal range (4 to 8 mg/dL) until the day of calving when average concentrations dropped below 4 mg/dL. From 3 to 14 d postpartum, serum P of cows fed 0.21% P was greater than that of cows fed 0.31 or 0.44% P. No cows presented with or were treated for clinical hypophosphatemia in the periparturient period. Total serum Ca was lower before calving through 2 d postpartum for cows fed 0.44% P compared with those fed 0.21 or 0.31%. Prepartum dietary P treatments did not alter blood osteocalcin, hydroxyproline, and deoxypyridinoline, indicators of bone metabolism, or concentrations of parathyroid hormone or 1,25-dihydroxyvitamin D3. Energy-corrected milk yield and milk composition (first 28 d of lactation) were not affected by prepartum dietary P concentrations. It is concluded that feeding 0.21% P (34 g of P/cow daily) prepartum is adequate for periparturient multiparous Holstein cows with high metabolic demands and genetic potential for milk production. No adverse effects on periparturient health, dry matter intake, or 28-d lactation performance resulted.  相似文献   

3.
《Journal of dairy science》2022,105(5):4370-4392
Phosphorus in bovine nutrition is under ongoing scrutiny because of concerns with excessive amounts of P excreted in manure contributing to environmental pollution. Feeding rations with excessive P content, however, still remains common practice, particularly during the transition period, as limited P supply in late gestation and early lactation is thought to present a risk for health and productivity of high-yielding dairy cows. The objectives of this study were to investigate the effect of restricted P supply during the last 4 wk of pregnancy on Ca and P homeostasis during the transition period in high-yielding dairy cows, and to identify possible effects on metabolism and productivity throughout the following lactation. Thirty late-pregnant multiparous dairy cows were randomly assigned to either a dry cow diet with low (LP) or adequate P (AP) content [0.16 and 0.30% P in dry matter (DM), respectively] to be fed in the 4 wk before calving. After calving all cows received the same ration with adequate P content (0.46% P in DM). Blood, milk, and liver tissue samples were obtained during the dry period and the following lactation, DM intake (DMI), body weight, milk production, and disease occurrence were monitored. Plasma was assayed for the concentrations of P, Ca, Na, and K, metabolic parameters, and liver enzyme activities. Liver tissue was analyzed for mineral, triglyceride, cholesterol, and water contents. Repeated-measures ANOVA was used to identify treatment, time, and treatment × time interaction effects. Cows fed LP had lower plasma P concentrations ([Pi]) than AP cows during restricted P feeding, reaching a nadir of 1.1 mmol/L immediately before calving. After calving, plasma [Pi] of LP cows was at or above the level of AP cows and within the reference range for cattle. Symptoms assumed to be associated with hypophosphatemia were not observed, but plasma Ca was higher from 1 wk before to 1 wk after calving in LP cows, which was associated with a numerically lower incidence of clinical and subclinical hypocalcemia in LP cows. Both treatments had a similar 305-d milk yield (12,112 ± 1,298 kg for LP and 12,229 ± 1,758 kg for AP cows) and similar DMI. Plasma and liver tissue biochemical analysis did not reveal treatment effects on energy, protein, or lipid metabolism. The results reported here indicate that restricted dietary P supply during the dry period positively affected the Ca homeostasis of periparturient dairy cows but did not reveal negative effects on DMI, milk production, or metabolic activity in the following lactation. Restriction of P during the dry period was associated with hypophosphatemia antepartum but neither exacerbated postparturient hypophosphatemia, which is commonly observed in fresh cows, nor was associated with any clinical or subclinical indication of P deficiency in early lactation.  相似文献   

4.
Plasma Ca, P, Mg, parathyroid hormone, and 1,25-dihydroxyvitamin D were measured in blood samples taken daily from d 5 before until d 15 to 30 after calving in 28 aged dairy cows (5 yr or older) and 9 first lactation cows. Subnormal plasma Ca concentrations were defined as being below the lower limit (2.18 mmol/L) of the 99% confidence interval for lactating cows outside the month of calving. A parturient minimum in plasma Ca and P concentrations occurred usually within 24 h after calving in all animals. Plasma mineral changes very similar to those at parturition were observed in 50% of the aged cows at one, two, or even three later occasions during the 1st mo postpartum. Interval between subsequent subnormal Ca minima in these Ca-cycling cows was 7 to 10 d. The function of the Ca regulating endocrine systems appeared adequate. Calcium cycling with increased amplitude could be induced by feeding 200 micrograms/d of 1,25-dihydroxyvitamin D3 for about 5 d around parturition (8 animals). The hypocalcemic episode was more pronounced than in untreated cows, and Ca cycling was traced throughout the 1st mo of lactation. Similar treatment also induced Ca cycling in 4 heifers, whereas 8 untreated heifers showed no tendency to Ca cycling in the postparturient period. The hypothesis is put forward that variations in intestinal Ca absorption induced by 1,25-dihydroxyvitamin D3 are the primary cause of the cyclic changes in plasma Ca postpartum of the aged dairy cow.  相似文献   

5.
Jersey cows were fed three alfalfa haylage-based diets with different cation-anion balances beginning 6 wk preceding third or later calving and ending 24 to 36 h postpartum. Sodium and Cl as percentages of dietary DM were .08 and 1.66 in diet 1 (anionic, 5 cows), .44 and .91 in diet 2 (intermediate, 6 cows), and 1.60 and .34 in diet 3 (cationic, 6 cows). Cation-anion balances were 22, 60, and 126 meq/100 g DM; Ca:P ratios averaged 4:1. Cows fed diet 1 in comparison with cows fed diets 2 or 3 over 6 wk had similar concentrations of Ca, P, and Na but higher concentrations of Mg and K in plasma and higher urinary excretions of Ca and Mg. Concentrations of 1,25-dihydroxyvitamin D 3 d before parturition were higher in cows fed diet 1 than in cows fed diets 2 or 3. Within 36 h after calving, mean concentrations of Ca in plasma (mg/dl, range) of cows fed diets 1 to 3, respectively, were 7 (8.7 to 6.2), 6.5 (7.8 to 3.9), and 6.3 (7.8 to 3.8). Number of cases of clinical milk fever by diet were 0 of 5, 2 of 6, and 1 of 6 cows. Alteration of dietary cation-anion balance by addition of Cl may effectively reduce incidence and severity of parturient hypocalcemia.  相似文献   

6.
The current study was conducted to investigate the effects of 5,6-dimethylbenzimidazole (DMB) supplementation to the feed during the transition period and early lactation on the vitamin B12 supply, lactation performance, and energy balance in postpartum cows. Twenty-four prepartum Holstein dairy cows were divided into 12 blocks based on their parity and milk yield at the last lactation and were then randomly allocated to 1 of 2 treatments: a basal diet without DMB (control) or a treatment diet that contained 1.5 g of DMB/d per cow. The study started at wk 3 before the expected calving day and ended at wk 8 postpartum. The feed intake and the lactation performance were measured weekly after calving. Blood parameters were measured on d ?10, 0, 8, 15, 29, 43, and 57 relative to the calving day. Body weight was measured on the calving day and on d 57 after calving. The yields of milk, protein, and lactose in cows fed DMB were higher than in the control throughout the whole postpartum stage. On wk 8 postpartum, the vitamin B12 content in the milk and sera was greater in cows fed DMB than in the control. The overall body weight loss from wk 1 to 8 postpartum was less in cows fed DMB than in the control. The plasma content of nonesterified fatty acids and β-hydroxybutyric acid was significantly lower in cows fed DMB than in the control throughout the whole experimental stage. In conclusion, dietary DMB fed during the transition period and early lactation improved the vitamin B12 supply, milk production, and energy balance of postpartum dairy cows.  相似文献   

7.
Nine multiparous and 12 primiparous cows were fed diets containing an anionic salt supplement and moderate Ca (0.99%) or high Ca (1.50%) concentrations for 21 d prepartum to determine the effects of dietary Ca concentration on serum and urine electrolytes and on postpartum intake and milk yield. Blood samples were collected during 21 to 1 d prepartum, 0 to 2 d postpartum, and 3 to 21 d postpartum. Dietary cation-anion difference (DCAD) for prepartum diets was approximately −6 mEq/100 g of dry matter (Na + K − Cl − S). Immediately postpartum, cows were fed diets with positive DCAD with greater than 1.00% Ca concentration. Mean serum Ca concentrations 21 to 1 d prepartum, 0 to 2 d postpartum, and 3 to 21 d postpartum were 9.62, 8.41, and 9.38 mg/dL. There were no treatment effects on serum Ca concentration. Mean serum Ca concentration was higher for primiparous than multiparous cows (9.34 vs. 8.93 mg/dL) for the trial and at calving (8.77 vs. 8.13 mg/dL). Mean serum HCO3 and urinary pH, respectively, were 20.32 mEq/L and 5.67 prepartum, 25.82 mEq/L and 7.62 at calving, and 26.08 mEq/L and 8.25 postpartum. No differences due to treatment were observed for serum and urinary concentrations of HCO3, pH, Mg, Na, K, and Cl. Milk yield was similar for 0.99 and 1.50% Ca treatments (22.8 and 20.7 kg/d). Diets containing 0.99 or 1.5% Ca maintained serum Ca at adequate levels around parturition and resulted in similar dry matter intake and postpartum milk yield.  相似文献   

8.
Calcium and P balance and mobilization from bone were evaluated through 20 wk of lactation to determine the timing and extent of net resorption of bone mineral and mineral balance in lactating dairy cows. Eighteen Holstein cows were blocked by parity and calving date and randomly assigned to 1 of 3 dietary treatments: high (1.03%, HI), medium (0.78%, MED), or low (0.52%, LOW) dietary Ca. Dietary P was 0.34% in all diets. Cows consumed treatment diets from calving to 140 DIM. Total collection of milk, urine, and feces was conducted 2 wk before expected calving and in wk 2, 5, 8, 11, and 20 of lactation. Blood samples were collected at 14 and 10 d before expected calving and 0, 1, 3, 5, 10, 14, 21, 28, 35, 56, 70, 84, 98, and 140 d after calving. Blood samples were analyzed for Ca, P, and parathyroid hormone concentration. Serum concentrations of osteocalcin (OC), a marker of bone formation, and deoxypyridinoline (DPD), a marker of bone resorption, were measured to assess bone mobilization. Rib bone biopsies were conducted within 10 d postcalving and during wk 11 and 20 of lactation. Dietary Ca concentration affected Ca balance, with cows consuming the HI Ca diet in positive Ca balance for all weeks with the exception of wk 11. Interestingly, all cows across all treatments had a negative Ca balance at wk 11, possibly the result of timed estrous synchronization that occurred during wk 11. At wk 20, Ca balances were 61.2, 29.9, and 8.1 g/d for the HI, MED, and LOW diets, respectively. Phosphorus balances across all treatments and weeks were negative. Bone Ca content on a fat-free ash weight basis was least in cows consuming the MED diet, but bone P was not different. Serum Ca and P were not affected by treatment. Dietary Ca concentration did not affect P balance in the weeks examined, but there was a clear effect of parity on balance, markers of bone metabolism, and bone P. Primiparous cows had greater serum OC and DPD concentrations than multiparous cows. Regardless of dietary treatment, serum OC concentration peaked around d 35 of lactation. Simultaneously, DPD concentration began to decrease, which may indicate a switch from net bone resorption to formation after d 35. However, this was not reflected in balance measures. This information may help refine dietary mineral recommendations for lactating dairy cows and suggests that dietary P requirements are independent of dietary Ca.  相似文献   

9.
The present experiment was undertaken to determine the effects of dietary supplements of rumen-protected methionine and intramuscular injections of folic acid and vitamin B12, given 3 wk before to 16 wk after calving, on glucose and methionine metabolism of lactating dairy cows. Twenty-four multiparous Holstein cows were assigned to 6 blocks of 4 cows each according to their previous milk production. Within each block, 2 cows were fed a diet estimated to supply methionine as 1.83% metabolizable protein, equivalent to 76% of methionine requirement, whereas the 2 other cows were fed the same diet supplemented daily with 18 g of rumen-protected methionine. Within each diet, the cows were administrated either no vitamin supplement or weekly intramuscular injections of 160 mg of folic acid plus 10 mg of vitamin B12. To investigate metabolic changes at 12 wk of lactation, glucose and methionine kinetics were measured by isotope dilution using infusions of 3[U-13C]glucose, [13C]NaHCO3 and 3[1-13C,2H3] methionine. Milk and plasma concentrations of folic acid and vitamin B12 increased with vitamin injections. Supplementary B-vitamins increased milk production from 34.7 to 38.9 ± 1.0 kg/d and increased milk lactose, protein, and total solids yields. Whole-body glucose flux tended to increase with vitamin supplementation with a similar quantitative magnitude as the milk lactose yield increase. Vitamin supplementation increased methionine utilization for protein synthesis through increased protein turnover when methionine was deficient and through decreased methionine oxidation when rumen-protected methionine was fed. Vitamin supplementation decreased plasma concentrations of homocysteine independently of rumen-protected methionine feeding, although no effect of vitamin supplementation was measured on methionine remethylation, but this could be due to the limitation of the technique used. Therefore, the effects of these B-vitamins on lactation performance were not mainly explained by methionine economy because of a more efficient methylneogenesis but were rather related to increased glucose availability and changes in methionine metabolism.  相似文献   

10.
In ruminants, more than 50% of overall gastrointestinal Ca absorption can occur preintestinally, and the anions of orally applied Ca salts are thought to play an important role in stimulating ruminal Ca absorption. This assumption is based mainly on ion-exchange studies that have used gluconate as the control anion, which may bind Ca2+ ions and interfere with treatment effects. In the present study, we investigated the distinct effects of different anions on Ca absorption across the sheep rumen and on the concentration of free Ca2+ ions ([Ca2+]ion). We showed that gluconate, sulfate, and short-chain fatty acids (SCFA) remarkably reduced [Ca2+]ion in buffer solutions. Nevertheless, increasing the Cl or SCFA concentration by 60 mM stimulated net ruminal Ca absorption 5- to 7-fold, but these effects could be antagonized by gluconate. Therefore, ion-exchange experiments must be (re)evaluated very carefully, because changes in [Ca2+]ion in the presence of gluconate, sulfate, or SCFA not only might entail an underestimation of Ca flux rates, but also might have effects on other cellular pathways that are Ca2+ dependent. Concerning the optimal Ca supply for dairy cows, the present study suggests that CaCl2 formulations and Ca salts of the SCFA stimulate Ca absorption across the rumen wall and are beneficial in preventing or correcting a Ca deficiency.  相似文献   

11.
《Journal of dairy science》2021,104(11):11646-11659
Our aim was to evaluate the effects of a low or high dietary phosphorus (P) concentration during the dry period, followed by either a high or low dietary P concentration during the first 8 wk of lactation, on plasma Ca concentrations, feed intake, and lactational performance of dairy cattle. Sixty pregnant multiparous Holstein Friesian dairy cows were assigned to a randomized block design with repeated measurements and dietary treatments arranged in a 2 × 2 factorial fashion. The experimental diets contained 3.6 (Dry-HP) or 2.2 (Dry-LP) g of P/kg of dry matter (DM) during the dry period, and 3.8 (Lac-HP) or 2.9 (Lac-LP) g of P/kg of DM during 56 d after calving period. In dry cows, plasma Ca concentrations were 3.3% greater when cows were fed 2.2 instead of 3.6 g of P/kg of DM. The proportion of cows being hypocalcemic (plasma Ca concentrations <2 mM) in the first week after calving was lowest with the low-P diets both during the dry period and lactation. Plasma Ca concentrations in wk 1 to 8 after calving were affected by dietary P level in the dry period and in the lactation period, but no interaction between both was present. Feeding Dry-LP instead of Dry-HP diets resulted in 4.1% greater plasma Ca values, and feeding Lac-LP instead of Lac-HP diets resulted in 4.0% greater plasma Ca values. After calving, plasma inorganic phosphate (Pi) concentrations were affected by a 3-way interaction between sampling day after calving, and dietary P levels during the dry period and lactation. From d 1 to d 7 postpartum, cows fed Lac-HP had increased plasma Pi concentrations, and the rate appeared to be greater in cows fed Dry-LP versus Dry-HP. In contrast, plasma Pi concentrations decreased from d 1 to d 7 postpartum in cows fed Lac-LP, and this decrease was at a higher rate for cows fed Dry-HP versus Dry-LP. After d 7, plasma Pi concentrations remained rather constant at 1.5 to 1.6 mM when cows received Lac-HP, whereas with Lac-LP plasma Pi concentrations reached stable levels (i.e., 1.3–1.4 mM) at d 28 after calving. Milk production, DM intake, and milk concentrations of P, Ca, fat, protein, and lactose were not affected by any interaction nor the levels of dietary P. It is concluded that the feeding of diets containing 2.2 g of P/kg of DM during the last 6 wk of the dry period and 2.9 g of P/kg of DM during early lactation increased plasma Ca levels when compared with greater dietary P levels. These low-P diets may be instrumental in preventing hypocalcemia in periparturient cows and do not compromise DM intake and milk production. Current results suggest that P requirements in dairy cows during dry period and early lactation can be fine-tuned toward lower values than recommended by both the National Research Council and the Dutch Central Bureau for Livestock Feeding. Caution however is warranted to extrapolate current findings to entire lactations because long-term effects of feeding low-P diets containing 2.9 of g/kg of DM on production and health needs further investigation.  相似文献   

12.
Twenty-seven multiparous Jersey cows were randomly assigned to receive an oral bolus containing corn starch (control, CON), corn starch plus 15 mg of 25-hydroxyvitamin D3 (25-OH), or 15 mg of cholecalciferol (D3) at 6 d before expected parturition. Cows were maintained in individual box stalls from 20 d before expected parturition and fed a common diet. Jugular blood samples were collected at −14, −13, −5, −4, −3, −2, −1 d before expected calving, at calving, and at 1, 3, 5, 7, 9, 11, 13, 28, 56, and 84 d postcalving. After calving, cows were housed in 1 pen in a free-stall barn and consumed a common diet. Colorimetric assays were used to analyze Ca, P, and Mg concentrations in serum. Serum concentrations of osteocalcin (OC), an indicator of bone formation, serum 25-hydroxyvitamin D3, and parathyroid hormone (PTH) were determined in samples obtained from d −5 through d 13. The 9 control multiparous cows and 5 untreated primiparous cows were used to evaluate the effect of parity on the variables that were measured. There was no effect of parity on Ca, PTH, or 25-OH concentration. Compared with second-lactation cows and older cows (>2 lactations), first-lactation cows had greater serum OC (22.3, 32.0, and 48.3 ng/mL, respectively), indicating that younger animals were forming more bone. Blood Ca, P, and Mg decreased near the time of calving and then increased over time. Serum 25-hydroxyvitamin D3 was greater for cows dosed with 25-OH (119.0 ng/mL) compared with those dosed with D3 (77.5 ng/mL) or CON (69.3 ng/mL). Cows dosed with 25-OH tended to have lower serum PTH concentration, but treatments did not affect serum Ca, P, or Mg. Serum OC was greater in second-lactation cows compared with cows entering their third or fourth lactation but OC was unaffected by treatment. Although results indicated a 60% increase in serum 25-hydroxyvitamin D3 due to a single oral dose of 25-OH before calving, the amount administered in this study apparently was not sufficient for initiation of any improvement in Ca homeostasis at parturition.  相似文献   

13.
This experiment was conducted to determine the effect of a direct-fed microbial agent, Propionibacterium strain P169 (P169), on rumen fermentation, milk production, and health of periparturient and early-lactation dairy cows. Starting 2 wk before anticipated calving, cows were divided into 2 groups and fed a control diet or the control diet plus 6 × 1011 cfu/d of P169. Cows were changed to a lactation diet at calving, and treatments continued until 119 d in milk. Rumen fluid samples were taken about 1 wk before calving, and at 1 and 14 wk after calving. Cows fed P169 had lower concentrations of acetate (mol/100 mol of total volatile fatty acids) at all time points, greater concentrations of propionate on the first and last sampling points, and greater concentrations of butyrate on the first 2 time points. Concentrations of glucose in plasma and milk and plasma concentrations of β-hydroxybutyrate were not affected by treatment. Cows fed P169 had greater concentrations of plasma nonesterified fatty acids on d 7 of lactation. The high nonesterified fatty acids at that time point was probably related to the high production of milk during that period by cows fed the additive. Cows fed P169 during the first 17 wk of lactation produced similar amounts of milk (44.9 vs. 45.3 kg/d, treatment vs. control) with similar composition as cows fed the control diet. Calculated net energy use for milk production, maintenance, and body weight change was similar between treatments, but cows fed the P169 consumed less dry matter (22.5 vs. 23.5 kg/d), which resulted in a 4.4% increase in energetic efficiency.  相似文献   

14.
This study was undertaken to evaluate the effect of supplementation of folic acid and vitamin B12 on glucose and propionate metabolism. Twenty-four multiparous cows were assigned according to a complete block design in a 2 × 2 factorial arrangement to one of the following treatments: (1) saline 0.9% NaCl, (2) 320 mg of folic acid, (3) 10 mg of vitamin B12, or (4) 320 mg of folic acid and 10 mg of vitamin B12. Intramuscular injections were given weekly from 3 wk before the expected calving date until 9 wk postpartum. At 63 d in milk, d-[6,6-2H2]-glucose (16.5 mmol/h; jugular vein) and [1-13C]-sodium propionate (13.9 mmol/h; ruminal vein) were simultaneously infused for 4 h; blood samples were collected from 2 to 4 h of the infusion period. Liver biopsies were carried out the following day. Supplements of folic acid and vitamin B12 respectively increased folate and vitamin B12 concentrations, both in milk and liver. Although dry matter intake was unaffected by treatments, milk and milk lactose yields tended to be lower by 5.0 and by 0.25 kg/d, respectively, for cows receiving the folic acid supplement. Plasma β-hydroxybutyrate concentration with the folic acid supplement followed the same tendency. Hepatic gene expression of methylmalonyl-CoA mutase and S-adenosylhomocysteine hydrolase was higher for cows receiving the combined folic acid and vitamin B12 supplement compared with cows receiving only the supplement of folic acid, whereas no treatment effect was noted for cows not receiving the folic acid supplement. Whole-body glucose rate of appearance and the proportion of whole-body glucose rate of appearance secreted in milk lactose decreased by 229 g/d and 5%, respectively, for animals receiving the folic acid supplement, concomitant with the lower milk lactose synthesis in these cows, indicating that supplementary folic acid may alter energy partitioning in cows. The absence of treatment effect on plasma concentrations of methylmalonic acid as well as on the proportion of glucose synthesized from propionate, averaging 60%, supports the fact that vitamin B12 supply was sufficient in control cows in the current study. Our results suggest that the folic acid supplement reduced glucose-derived lactose synthesis by redirecting glucose for other metabolic activity in the mammary gland or in other tissues.  相似文献   

15.
The current study was conducted to investigate the effects of dietary supplementation of biotin, intramuscular injections of vitamin B12 (VB12), or both beginning at the prepartum period on feed intake and lactation performance in postpartum dairy cows. Forty-eight dairy cows were allocated into 12 blocks, based on parity and milk yield of the previous lactation cycle, and randomly assigned to 1 of 4 treatments. Supplementation of VB12 (weekly intramuscular injections of 0 or 10 mg) and biotin (dietary supplements of 0 or 30 mg/d) were used in a 2 × 2 factorial arrangement in a randomized complete block design of 12 blocks with repeated measures. The study started at 3 wk before the expected calving date and ended at 8 wk after calving. Feed intake and lactation performance (milk yield and composition) were recorded weekly after calving. Blood variables were measured on d ?10, 0, 8, 15, 29, 43, and 57 relative to calving. When VB12 was given, the cows had greater feed intake, better lactation performance and lower body weight loss in the postpartum period compared with animals without injection of VB12. The VB12-injected cows had lower plasma nonesterified fatty acids and β-hydroxybutyrate concentrations but higher plasma superoxide dismutase activity compared with cows without VB12. Cows fed a biotin supplement had higher milk protein yield (6 and 8 wk) and lactose yield (6–8 wk), compared with animals without biotin. However, under the present experimental conditions, we found no additive effect of a combined supplement of biotin and vitamin B12 on lactation performance of dairy cows.  相似文献   

16.
《Journal of dairy science》2022,105(2):1199-1210
Dairy cows commonly undergo negative Ca balance accompanied by hypocalcemia after parturition. A negative dietary cation-anion difference (DCAD) strategy has been used prepartum to improve periparturient Ca homeostasis. Our objective was to determine the influence of a negative DCAD diet with different amounts of dietary Ca on the blood acid-base balance, blood gases, and metabolic adaptation to lactation. Multiparous Holstein cows (n = 81) were blocked into 1 of 3 dietary treatments from 252 d of gestation until parturition: (1) positive DCAD diet and low Ca (CON; containing +6.0 mEq/100 g DM, 0.4% DM Ca); (2) negative DCAD diet and low Ca (ND; ?24.0 mEq/100 g DM, 0.4% DM Ca); or (3) negative DCAD diet plus high Ca supplementation (NDCA; ?24.1 mEq/100 g DM, 2.0% DM Ca). There were 28, 27, and 26 cows for CON, ND, and NDCA, respectively. Whole blood was sampled at 0, 24, 48, and 96 h after calving for immediate determination of blood acid-base status and blood gases. Serum samples collected at ?21, ?14, ?7, ?4, ?2, ?1, at calving, 1, 2, 4, 7, 14, 21, and 28 d relative to parturition were analyzed for metabolic components. Results indicated that cows fed ND or NDCA had lower blood pH at calving but greater pH at 24 h after calving compared with CON. Blood bicarbonate, base excess, and total CO2 (tCO2) concentrations of cows in ND and NDCA groups were less than those of cows in CON at calving but became greater from 24 to 96 h postpartum. The NDCA cows had lower blood bicarbonate, base excess, and tCO2 at 48 h and greater partial pressure of oxygen after calving compared with ND. Cows fed ND or NDCA diets had lower serum glucose concentrations than CON cows before calving but no differences were observed postpartum. Serum concentrations of total protein and albumin were greater prepartum for cows in ND and NDCA groups than for those in CON. Postpartum serum urea N and albumin concentrations tended to be higher for ND and NDCA cows. Cows fed ND or NDCA diets had elevated serum total cholesterol concentration prepartum. During the postpartum period, triglycerides and NEFA of cows fed ND or NDCA diets tended to be lower than those of CON. Cows fed the NDCA diet had greater postpartum total cholesterol in serum and lower NEFA concentration at calving than ND. In conclusion, feeding a prepartum negative DCAD diet altered blood acid-base balance and induced metabolic acidosis at calving, and improved protein and lipid metabolism. Supplementation of high Ca in the negative DCAD diet prepartum was more favorable to metabolic adaptation to lactation in dairy cows than the negative DCAD diet with low Ca.  相似文献   

17.
Pregnant Holstein cows, 28 nulliparous and 51 parous, were blocked by parity and milk yield and randomly allocated to receive diets that differed in dietary cation-anion difference (DCAD), +130 or ?130 mEq/kg, and supplemented with either calcidiol or cholecalciferol at 3 mg/11 kg of dry matter from 255 d of gestation until parturition. Blood was sampled thrice weekly prepartum, and on d 0, 1, 2, 3, 6, 9, 12, 15, 18, 21, 24, 27, and 30 postpartum to evaluate effects of the diets on vitamin D, mineral and bone metabolism, and acid-base status. Blood pH and concentrations of minerals, vitamin D metabolites, and bone-related hormones were determined, as were mineral concentrations and losses in urine and colostrum. Supplementing with calcidiol increased plasma concentrations of 25-hydroxyvitamin D3, 3-epi 25-hydroxyvitamin D3, 25-hydroxyvitamin D2, 1,25-dihydroxyvitamin D3, and 24,25-dihydroxyvitamin D3 compared with supplementing with cholecalciferol. Cows fed the diet with negative DCAD had lesser concentrations of vitamin D metabolites before and after calving than cows fed the diet with positive DCAD, except for 25-hydroxyvitamin D2. Feeding the diet with negative DCAD induced a compensated metabolic acidosis that attenuated the decline in blood ionized Ca (iCa) and serum total Ca (tCa) around calving, particularly in parous cows, whereas cows fed the diet with positive DCAD and supplemented with calcidiol had the greatest 1,25-dihydroxyvitamin D3 concentrations and the lowest iCa and tCa concentrations on d 1 and 2 postpartum. The acidogenic diet or calcidiol markedly increased urinary losses of tCa and tMg, and feeding calcidiol tended to increase colostrum yield and increased losses of tCa and tMg in colostrum. Cows fed the diet with negative DCAD had increased concentrations of serotonin and C-terminal telopeptide of type 1 collagen prepartum compared with cows fed the diet with positive DCAD. Concentrations of undercarboxylated and carboxylated osteocalcin and those of adiponectin did not differ with treatment. These results provide evidence that dietary manipulations can induce metabolic adaptations that improve mineral homeostasis with the onset of lactation that might explain some of the improvements observed in health and production when cows are fed diets with negative DCAD or supplemented with calcidiol.  相似文献   

18.
Our study objectives were to evaluate the association of prepartum plasma Mg concentrations with subclinical hypocalcemia (SCH) classification at parturition and to evaluate the association of other cow-level risk factors with SCH classification at calving or at 2 d in milk (DIM). A total of 301 animals from 2 dairy herds located in New York were enrolled in a cohort study. Blood samples were collected at approximately 1 wk before the expected calving date, within 4 h of calving, and at 2 DIM. Prepartum samples had plasma macromineral concentrations (Ca, K, Mg, P), albumin, and β-hydroxybutyrate analyzed. Samples collected at calving were analyzed for Ca only, and samples from 2 DIM had macromineral and albumin concentrations determined. Postpartum SCH was defined as Ca concentrations ≤2.1 mmol/L. The prevalence of SCH at calving was 2, 40, and 66% for first, second, and third or greater parities, respectively. Only 4% of cows could be classified with prepartum subclinical hypomagnesemia (Mg concentrations <0.8 mmol/L), which did not provide enough power to appropriately determine the association of plasma Mg with postpartum Ca concentrations and its effect on SCH classification. Multiparous cows with Ca concentrations ≤2.4 mmol/L in the prepartum period and third or greater parity cows had a higher risk of being categorized as SCH at calving [relative risk (RR) = 1.4 and 1.7, respectively]. The risk of SCH at 2 DIM was associated with the interaction of Ca status at calving and lameness score. Nonlame cows with Ca concentrations ≤2.1 mmol/L (RR = 3.2) and normocalcemic lame cows at parturition (RR = 3.4) were more likely to be SCH at 2 DIM compared with nonlame normocalcemic cows. In conclusion, we identified a prepartum Ca cut-point for identification of cows that are more likely to be classified as SCH at calving. Different risk factors were associated with SCH depending on the timing of diagnosis relative to parturition.  相似文献   

19.
The objective of this study was to evaluate the effect of supplementation with oral Ca boluses after calving on early-lactation health and milk yield. Cows in their second lactation or greater (n = 927) from 2 large dairies in Wisconsin were enrolled during the summer of 2010. Both herds were fed supplemental anions during the prefresh period and less than 1% of fresh cows were treated for clinical milk fever. Cows were scored before calving for lameness and body condition, and then randomly assigned to either a control group or an oral Ca bolus-supplemented group. Control cows received no oral Ca boluses around calving. Cows in the oral Ca bolus group received 2 oral Ca boluses (Bovikalc, Boehringer Ingelheim, St. Joseph, MO), one bolus 0 to 2 h after calving and the second 8 to 35 h after calving. The oral Ca bolus administration schedule allowed fresh cows to be restrained in headlocks only once daily. Whole-blood samples were collected immediately before the second oral Ca bolus was given and were analyzed for ionized Ca (Ca2+) concentration. Early-lactation health events were recorded and summed for each cow. Only 6 cases (0.6% of calvings) of clinical milk fever occurred during the trial, and only 14% of cows tested were hypocalcemic (Ca2+ less than 1.0 mmol/L) at 8 to 35 h after calving. Mean Ca2+ concentrations were not different between the control and oral Ca bolus-supplemented groups. Blood samples from the cows given oral Ca boluses were collected an average of 20.6 h after administration of the first bolus. Subpopulations of cows with significant responses to oral Ca bolus supplementation were identified based on significant interactions between oral Ca bolus supplementation and covariates in mixed multiple regression models. Lame cows supplemented with oral Ca boluses averaged 0.34 fewer health events in the first 30 d in milk compared with lame cows that were not supplemented with oral Ca boluses. Cows with a higher previous lactation mature-equivalent milk production (greater than 105% of herd rank) and supplemented with oral Ca boluses produced 2.9 kg more milk at their first test after calving compared with cows with higher previous lactation milk yields that were not supplemented. Results of this study indicate that lame cows and higher producing cows responded favorably to supplementation with oral Ca boluses. Supplementing targeted subpopulations of cows with oral Ca boluses was beneficial even for dairies with a very low incidence of hypocalcemia.  相似文献   

20.
The purpose of the present study was to determine changes of plasma osteocalcin levels in periparturient cows and to examine the correlation of plasma osteocalcin level with that of 1,25-dihydroxyvitamin D, Ca, and inorganic P. Five Holstein-Friesian cows, aged 3 to 5 yr, were used from 5 d before to 15 d after calving. Concentration (mean +/- SE) of plasma osteocalcin decreased rapidly from d 1 prepartum, reached a low of 8.0 +/- 3.0 ng/ml at d 1 postpartum, and then recovered gradually to 17.8 +/- 3.8 ng/ml at 15 d after calving. In contrast, the concentration of plasma 1,25-dihydroxyvitamin D increased from calving to 3 d postpartum. Plasma concentrations of osteocalcin did not correlate significantly with those of 1,25-dihydroxyvitamin D, but it was significantly proportional to that of Ca and inorganic P. It is suggested that osteoblast function is depressed by a number of factors around the time of parturition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号