首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pattern of odd- and branched-chain fatty acids (OBCFA) in milk fat reflects rumen microbial activity and proportions of different rumen microbial groups. Therefore, these milk fatty acids (FA) are used to predict rumen proportions of volatile fatty acids, duodenal flow of microbial protein, and occurrence of rumen acidosis. However, current models do not correct for the potential effects of lactation stage on the level of OBCFA in milk fat. Hence, the objectives of this study were 1) to describe progressive changes related to lactation stage in concentrations of milk FA, with emphasis on the OBCFA, using the incomplete gamma function of Wood, and 2) to analyze whether lactation curves of milk FA on the one hand and milk production or milk fat content on the other hand coincide through evaluation of the correlation between the parameters of the Wood functions fitted to individual animal data. Data were collected from 2 trials in which milk FA during lactation were monitored. The first experiment was a stable trial with 2 groups of 10 cows receiving 2 dietary treatments from wk 1 to 40 of lactation. The second experiment was a grazing trial with 9 cows that were followed during the first 18 wk of lactation. Lactation curves of milk production, milk fat content, and individual milk FA were developed using the incomplete gamma function of Wood for each of the 3 dietary strategies separately. For almost all of the milk FA, lactation curve shapes were similar for all 3 dietary treatments. The OBCFA with chain lengths of 14 and 15 carbon atoms followed the lactation curves of the short- and medium-chain milk FA, which increased in early lactation. The OBCFA with chain length of 17 carbon atoms decreased during the early lactation period, following the pattern of milk long-chain fatty acids. The short- and medium-chain milk FA and OBCFA in the early lactation period seemed to be negatively correlated with the starting milk production and milk fat content, but correlations were modest. Information of milk FA lactation curves should be incorporated in predictive and classification models based on these milk FA, to improve their performance.  相似文献   

2.
《Journal of dairy science》1988,71(9):2508-2512
Quarter foremilk samples from 61 cows were obtained at 1.5, 3, 21, and 35 wk of lactation and at 7 d after drying off. Measurements for each sample were milk SCC, NAGase activity in the milk and ability of milk to promote phagocytosis of Staphylococcus aureus by polymorphonuclear leukocytes. Milk SCC and NAGase were correlated (r = .62). The NAGase in dry cow secretion was 10-fold higher than in milk. Parity differences in NAGase activity were not significant. There were large stage of lactation trends in NAGase: NAGase activity was high in early lactation, decreased in midlactation, and increased in late lactation and in dry secretion. The increase in activity of the enzyme in milk of first parity cows in late lactation was not as great as in milk of second and third lactation cows. N-Acetyl-β-D-glucosaminidase activity of milk from quarters with intramammary infections was higher than that of milk from quarters free of pathogens.  相似文献   

3.
《Journal of dairy science》2021,104(9):10355-10362
This work examined the effects of precalving administration of continuous-release monensin capsule on postcalving milk fatty acid (FA) profile and on the accuracy of FA as a biomarker in the early identification of cows with elevated blood plasma nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHB) concentrations. Approximately 3 wk before expected calving, 203 multiparous Estonian Holstein cows were randomly divided into control (CO; n = 116) and experimental (MO; n = 87) groups, and a continuous-release capsule of monensin was administered to the MO cows. Blood samples were taken daily in the first 4 d postpartum, then on the sixth or seventh day in milk, twice in the second week, and thenceforth once per week until the end of the sixth week. Milk samples were taken once from 4 to 7 d in milk, twice in the second week, and thenceforth once per week. Blood samples were analyzed for NEFA and BHB, and milk was analyzed for FA concentrations. Cows with postpartum BHB concentrations ≥1.2 mmol/L at least once during the 6 wk were classified as hyperketonemic (HYK), and cows with NEFA concentrations ≥1.0 mmol/L as having elevated concentration of NEFA (NEFAH). The ability of FA to predict NEFAH and HYK cows was studied with logistic regression and receiver operating characteristic curve analysis and the identification accuracy was estimated by area under the receiver operating characteristic curve. For these analyses, we used FA measured on the ninth day after calving. Monensin administration affected FA mobilization and metabolism of the animals as blood NEFA were lower in the MO group on wk 1 and wk 3, and BHB values were considerably lower from wk 1 to wk 4 compared with the CO group. The FA dynamics were generally similar for MO and CO groups. Monensin administration resulted in higher concentrations of C15:0, C16:0, iso C17:0, anteiso C15:0, anteiso C17:0, total trans monounsaturated FA, and C18:2 cis-9,trans-11, and lower proportions of C18:0, C18:1 cis-9, and most of the iso FA. The identification accuracy of NEFAH and HYK cows was higher in the CO compared with the MO group and for the identification of HYK compared with NEFAH cows (0.75–0.77 vs. 0.78–0.80 in the CO group, and 0.61–0.66 vs. 0.68–0.75 in the MO group for NEFAH vs. HYK, respectively). For all FA, the threshold values to identify NEFAH and HYK cows were different in the CO and MO groups. Results suggest that specific threshold values for the identification of NEFAH and HYK cows could be applicable only within similar feeding conditions and rumen environment.  相似文献   

4.
《Journal of dairy science》2022,105(8):6833-6844
The relationships between dairy cow milk-based energy status (ES) indicators and fertility traits were studied during periods 8 to 21, 22 to 35, 36 to 49, and 50 to 63 d in milk. Commencement of luteal activity (C-LA) and interval from calving to the first heat (CFH), based on frequent measurements of progesterone by the management tool Herd Navigator (DeLaval), were used as fertility traits. Energy status indicator traits were milk β-hydroxybutyrate (BHB) concentration provided by Herd Navigator and milk fat:protein ratio, concentration of C18:1 cis-9, the ratio of fatty acids (FA) C18:1 cis-9 and C10:0 in test-day milk samples, and predicted plasma concentration of nonesterified fatty acids (NEFA) on test days. Plasma NEFA predictions were based either directly on milk mid-infrared spectra (MIR) or on milk fatty acids based on MIR spectra (NEFAmir and NEFAfa, respectively). The average (standard deviation) C-LA was 39.3 (±16.6) days, and the average CFH was 50.7 (±17.2) days. The correlations between fertility traits and ES indicators tended to be higher for multiparous (r < 0.28) than for primiparous (r < 0.16) cows. All correlations were lower in the last period than in the other periods. In period 1, correlations of C-LA with NEFAfa and BHB, respectively, were 0.15 and 0.14 for primiparous and 0.26 and 0.22 for multiparous cows. The associations between fertility traits and ES indicators indicated that negative ES during the first weeks postpartum may delay the onset of luteal activity. Milk FPR was not as good an indicator for cow ES as other indicators. According to these findings, predictions of plasma NEFA and milk FA based on milk MIR spectra of routine test-day samples and the frequent measurement of milk BHB by Herd Navigator gave equally good predictions of cow ES during the first weeks of lactation. Our results indicate that routinely measured milk traits can be used for ES evaluation in early lactation.  相似文献   

5.
Milk fatty acid (FA) profile is a dynamic pattern influenced by lactational stage, energy balance and dietary composition. In the first part of this study, effects of the energy balance during the proceeding lactation [weeks 1-21 post partum (pp)] on milk FA profile of 30 dairy cows were evaluated under a constant feeding regimen. In the second part, effects of a negative energy balance (NEB) induced by feed restriction on milk FA profile were studied in 40 multiparous dairy cows (20 feed-restricted and 20 control). Feed restriction (energy balance of -63 MJ NEL/d, restriction of 49 % of energy requirements) lasted 3 weeks starting at around 100 days in milk. Milk FA profile changed markedly from week 1 pp up to week 12 pp and remained unchanged thereafter. The proportion of saturated FA (predominantly 10:0, 12:0, 14:0 and 16:0) increased from week 1 pp up to week 12 pp, whereas monounsaturated FA, predominantly the proportion of 18:1,9c decreased as NEB in early lactation became less severe. During the induced NEB, milk FA profile showed a similarly directed pattern as during the NEB in early lactation, although changes were less marked for most FA. Milk FA composition changed rapidly within one week after initiation of feed restriction and tended to adjust to the initial composition despite maintenance of a high NEB. C18:1,9c was increased significantly during the induced NEB indicating mobilization of a considerable amount of adipose tissue. Besides 18:1,9c, changes in saturated FA, monounsaturated FA, de-novo synthesized and preformed FA (sum of FA >C16) reflected energy status in dairy cows and indicated the NEB in early lactation as well as the induced NEB by feed restriction.  相似文献   

6.
《Journal of dairy science》2023,106(4):2716-2728
Cows undergo immense physiological stress to produce milk during early lactation. Monitoring early lactation milk through Fourier-transform infrared (FTIR) spectroscopy might offer an understanding of which cows transition successfully. Daily patterns of milk constituents in early lactation have yet to be reported continuously, and the study objective was to initially describe these patterns for cows of varying parity groups from 3 through 10 d postpartum, piloted on a single dairy. We enrolled 1,024 Holstein cows from a commercial dairy farm in Cayuga County, New York, in an observational study, with a total of 306 parity 1 cows, 274 parity 2 cows, and 444 parity ≥3 cows. Cows were sampled once daily, Monday through Friday, via proportional milk samplers, and milk was stored at 4°C until analysis using FTIR. Estimated constituents included anhydrous lactose, true protein, and fat (g/100 g of milk); relative % (rel%) of total fatty acids (FA) and concentration (g/100 g of milk) of de novo, mixed, and preformed FA; individual fatty acids C16:0, C18:0, and C18:1 cis-9 (g/100 g of milk); milk urea nitrogen (MUN; mg/100 g of milk); and milk acetone (mACE), milk β-hydroxybutyrate (mBHB), and milk-predicted blood nonesterified fatty acids (mpbNEFA) (all expressed in mmol/L). Differences between parity groups were assessed using repeated-measures ANOVA. Milk yield per milking differed over time between 3 and 10 DIM and averaged 8.7, 13.3, and 13.3 kg for parity 1, 2, and ≥3 cows, respectively. Parity differences were found for % anhydrous lactose, % fat, and preformed FA (g/100 g of milk). Parity differed across DIM for % true protein, de novo FA (rel% and g/100 g of milk), mixed FA (rel% and g/100 g of milk), preformed FA rel%, C16:0, C18:0, C18:1 cis-9, MUN, mACE, mBHB, and mpbNEFA. Parity 1 cows had less true protein and greater fat percentages than parity 2 and ≥3 cows (% true protein: 3.52, 3.76, 3.81; % fat: 5.55, 4.69, 4.95, for parity 1, 2, ≥3, respectively). De novo and mixed FA rel% were reduced and preformed FA rel% were increased in primiparous compared with parity 2 and ≥3 cows. The increase in preformed FA rel% in primiparous cows agreed with milk markers of energy deficit, such that mpbNEFA, mBHB, and mACE were greatest in parity 1 cows followed by parity ≥3 cows, with parity 2 cows having the lowest concentrations. When measuring milk constituents with FTIR, these results suggest it is critical to account for parity for the majority of estimated milk constituents. We acknowledge the limitation that this study was conducted on a single farm; however, if FTIR technology is to be used as a method of identifying cows maladapted to lactation, understanding variations in early lactation milk constituents is a crucial first step in the practical adoption of this technology.  相似文献   

7.
The effect of a grain-based concentrate supplement on fatty acid (FA) intake and concentration of milk FA in early lactation was investigated in grazing dairy cows that differed in their country of origin and in their estimated breeding value for milk yield. It was hypothesized that Holstein-Friesian cows of North American (NA) origin would produce milk lower in milk fat than those of New Zealand (NZ) origin, and that the difference would be associated with lower de novo synthesis of FA. In comparison, increasing the intake of concentrates should have the same effect on the FA composition of the milk from both strains. Fifty-four cows were randomly assigned in a factorial arrangement to treatments including 3 amounts of concentrate daily [0, 3, and 6 kg of dry matter (DM)/cow] and the 2 strains. The barley/steam-flaked corn concentrate contained 3.5% DM FA, with C18:2, C16:0, and C18:1 contributing 48, 18, and 16% of the total FA. The pasture consumed by the cows contained 4.6% DM FA with C18:3, C16:0, and C18:1 contributing 51, 10, and 10% of the FA, respectively. Pasture DM intake decreased linearly with supplementation, but total DM intake was not different between concentrate or strain treatments, averaging 16.2 kg of DM/cow, with cows consuming 720 g of total FA/d. Cows of the NA strain had lesser concentrations of milk fat compared with NZ cows (3.58 vs. 3.95%). Milk fat from the NA cows had lesser concentrations of C6:0, C8:0, C10:0, C12:0, C14:0, and C16:0, and greater concentrations of cis-9 C18:1, C18:2, and cis-9, trans-11 C18:2, than NZ cows. These changes indicated that in milk from NA cows had a lesser concentration of de novo synthesized FA and a greater concentration of FA of dietary origin. Milk fat concentration was not affected by concentrate supplementation. Increasing concentrate intake resulted in linear increases in the concentrations of C10:0, C12:0, C14:0, and C18:2 FA in milk fat, and a linear decrease in the concentration of C4:0 FA. The combination of NA cows fed pasture alone resulted in a FA composition of milk that was potentially most beneficial from a human health perspective; however, this would need to be balanced against other aspects of the productivity of these animals.  相似文献   

8.
The aim of this study was to describe metabolism of early-lactation dairy cows by clustering cows based on glucose, insulin-like growth factor I (IGF-I), free fatty acid, and β-hydroxybutyrate (BHB) using the k-means method. Predictive models for metabolic clusters were created and validated using 3 sets of milk biomarkers (milk metabolites and enzymes, glycans on the immunogamma globulin fraction of milk, and Fourier-transform mid-infrared spectra of milk). Metabolic clusters are used to identify dairy cows with a balanced or imbalanced metabolic profile. Around 14 and 35 d in milk, serum or plasma concentrations of BHB, free fatty acids, glucose, and IGF-I were determined. Cows with a favorable metabolic profile were grouped together in what was referred to as the “balanced” group (n = 43) and were compared with cows in what was referred to as the “other balanced” group (n = 64). Cows with an unfavorable metabolic profile were grouped in what was referred to as the “imbalanced” group (n = 19) and compared with cows in what was referred to as the “other imbalanced” group (n = 88). Glucose and IGF-I were higher in balanced compared with other balanced cows. Free fatty acids and BHB were lower in balanced compared with other balanced cows. Glucose and IGF-I were lower in imbalanced compared with other imbalanced cows. Free fatty acids and BHB were higher in imbalanced cows. Metabolic clusters were related to production parameters. There was a trend for a higher daily increase in fat- and protein-corrected milk yield in balanced cows, whereas that of imbalanced cows was higher. Dry matter intake and the daily increase in dry matter intake were higher in balanced cows and lower in imbalanced cows. Energy balance was continuously higher in balanced cows and lower in imbalanced cows. Weekly or twice-weekly milk samples were taken and milk metabolites and enzymes (milk glucose, glucose-6-phosphate, BHB, lactate dehydrogenase, N-acetyl-β-d-glucosaminidase, isocitrate), immunogamma globulin glycans (19 peaks), and Fourier-transform mid-infrared spectra (1,060 wavelengths reduced to 15 principal components) were determined. Milk biomarkers with or without additional cow information (days in milk, parity, milk yield features) were used to create predictive models for the metabolic clusters. Accuracy for prediction of balanced (80%) and imbalanced (88%) cows was highest using milk metabolites and enzymes combined with days in milk and parity. The results and models of the present study are part of the GplusE project and identify novel milk-based phenotypes that may be used as predictors for metabolic and performance traits in early-lactation dairy cows.  相似文献   

9.
Shortening or omitting the dry period (DP) improves energy balance (EB) in early lactation because of a reduction in milk yield. Lower milk yield results in lower energy demands and requires less energy intake. The aim of this study was to evaluate the effects of DP length and concentrate level postpartum on milk yield, feed intake, EB, and plasma metabolites between wk ?4 and 7 relative to calving of cows of second parity or higher. Holstein-Friesian dairy cows (n = 123) were assigned randomly to 1 of 2 DP lengths: 0-d DP (n = 81) or 30-d DP (n = 42). Prepartum, cows with a 0-d DP received a lactation ration based on grass silage and corn silage (6.4 MJ of net energy for lactation/kg of dry matter). Cows with a 30-d DP received a dry cow ration based on grass silage, corn silage, and straw (5.4 MJ of net energy for lactation/kg of dry matter). Postpartum, all cows received the same basal lactation ration as provided to lactating cows prepartum. Cows with a 0-d DP were fed a low level of concentrate up to 6.7 kg/d based on the requirement for their expected milk yield (0-d DP-L; n = 40) or the standard level of concentrate up to 8.5 kg/d (0-d DP-S; n = 41), which was equal to the concentrate level for cows with a 30-d DP (30-d DP-S; n = 42) based on requirements for their expected milk yield. Prepartum dry matter intake, concentrate intake, basal ration intake, energy intake, plasma β-hydroxybutyrate (BHB), and insulin concentrations were greater and plasma free fatty acids (FFA) and glucose concentrations were lower, but EB was not different in cows with a 0-d DP compared with cows with a 30-d DP. During wk 1 to 3 postpartum, milk fat yield and plasma BHB concentration were lower and dry matter intake and concentrate intake were greater in cows with a 0-d DP compared with cows with a 30-d DP. During wk 4 to 7 postpartum, fat- and protein-corrected milk (FPCM), lactose content, and lactose and fat yield were lower in 0-d DP-L or 0-d DP-S cows compared with 30-d DP-S cows. Basal ration intake, EB, body weight, plasma glucose, and insulin and insulin-like growth factor-1 concentrations were greater and plasma FFA and BHB concentrations were lower in 0-d DP-L and 0-d DP-S cows compared with 30-d DP-S cows. Concentrate and energy intake were lower in 0-d DP-L cows than in 0-d DP-S or 30-d DP-S cows. Milk yield and concentrations of plasma metabolites did not differ in wk 4 to 7, although EB was lower in wk 6 and 7 postpartum in 0-d DP-L cows than in 0-d DP-S cows. In conclusion, a 0-d DP reduced milk yield and improved EB and metabolic status of cows in early lactation compared with a 30-d DP. Reducing the postpartum level of concentrate of cows with a 0-d DP did not affect fat- and protein-corrected milk yield or plasma FFA and BHB concentrations in early lactation but did reduce EB in wk 6 and 7 postpartum.  相似文献   

10.
The objective of this study was to assess the phenotypic and genetic variability of production traits and milk fatty acid (FA) contents throughout lactation. Genetic parameters for milk, fat, and protein yields, fat and protein contents, and 19 groups and individual FA contents in milk were estimated for first-parity Holstein cows in the Walloon Region of Belgium using single-trait, test-day animal models and random regressions. Data included 130,285 records from 26,166 cows in 531 herds. Heritabilities indicated that de novo synthesized FA were under stronger genetic control than FA originating from the diet and from body fat mobilization. Estimates for saturated short- and medium-chain individual FA ranged from 0.35 for C4:0 to 0.44 for C8:0, whereas those for monounsaturated long-chain individual FA were lower (around 0.18). Moreover, de novo synthesized FA were more heritable in mid to late lactation. Approximate daily genetic correlations among traits were calculated as correlations between daily breeding values for days in milk between 5 and 305. Averaged daily genetic correlations between milk yield and FA contents did not vary strongly among FA (around −0.35) but they varied strongly across days in milk, especially in early lactation. Results indicate that cows selected for high milk yield in early lactation would have lower de novo synthesized FA contents in milk but a slightly higher content of C18:1 cis-9, indicating that such cows might mobilize body fat reserves. Genetic correlations among FA emphasized the combination of FA according to their origin: contents in milk of de novo FA were highly correlated with each other (from 0.64 to 0.99). Results also showed that genetic correlations between C18:1 cis-9 and other FA varied strongly during the first 100 d in milk and reinforced the statement that the release of long-chain FA inhibits FA synthesis in the mammary gland while the cow is in negative energy balance. Finally, results showed that the FA profile in milk changed during the lactation phenotypically and genetically, emphasizing the relationship between the physiological status of cow and milk composition.  相似文献   

11.
Ten ruminally cannulated cows were used in a crossover design that investigated the effect of rumen digesta inoculation from non-milk fat-depressed cows on recovery from classical diet-induced milk fat depression (MFD) characterized by reduced fat yield, reduced de novo milk fat synthesis, and increased alternate trans isomers. Two additional cows fed a high-fiber and low-polyunsaturated fatty acid (FA) diet (31.8% neutral detergent fiber, 4.2% FA, and 1.2% C18:2) were used as rumen digesta donors. Milk fat depression was induced during the first 10 d of each period by feeding a low-fiber and high-polyunsaturated FA diet (induction; 26.1% neutral detergent fiber, 5.8% FA, and 1.9% C18:2), resulting in a 30% decrease in milk fat yield. A recovery phase followed where all cows were switched to the high-forage, low-polyunsaturated FA diet and were allocated to (1) control (no inoculation) or (2) ruminal inoculation with donor cow digesta (8 kg/d for 6 d). Milk yield and composition were measured every 3 d. Milk yield progressively decreased during recovery. Milk fat concentration increased progressively during the recovery phase and no effect of treatment existed at any time point. Also, no treatment effect of milk fat yield was detected. The concentration of milk de novo FA increased progressively during recovery for both treatments and was higher for inoculated compared with control cows on d 6. In agreement, milk fat concentration of trans-10,cis-12 conjugated linoleic acid decreased progressively in both treatments and was lower in inoculated cows on d 3 and 6. Ruminal inoculation from non-milk fat-depressed cows did not change milk fat yield, but slightly accelerated the rate of recovery of de novo FA synthesis and normal ruminal FA biohydrogenation, demonstrating a possible opportunity for other interventions that improve the ruminal environment to accelerate recovery from this condition.  相似文献   

12.
The purpose of this experiment was to determine the effects of feeding increasing levels of fresh forage (FF) as a proportion of total dry matter intake (DMI) on nutrient intake, rumen digestion, nutrient utilization, and productive performance of total mixed ration (TMR)-fed cows. Twelve dairy cows (90 ± 22 d in milk, 523 ± 88 kg of body weight, 7,908 ± 719 kg of milk production in the previous lactation) were housed in individual tiestalls and assigned to treatments according to a 3 × 3 Latin square design replicated 4 times. Treatments were 100% TMR (T100), 75% TMR plus 25% FF (T75), and 50% TMR plus 50% FF (T50). The experiment lasted 60 d, divided into 3 periods of 20 d each; the first 12 d of each period were used for diet adaptation and the last 8 d for data collection. The TMR (18.1% crude protein, 24.6% acid detergent fiber) and FF (Lolium multiflorum; 15.1% crude protein, 24.1% acid detergent fiber) were prepared and cut daily and offered to each cow individually. The highest DMI was reached in T100 and T75, which was reflected in greater intake of the different nutrients than T50. No differences were detected in the apparent total digestibility of the nutrients, mean ruminal pH, and total volatile fatty acid concentrations among treatments. Cows in T50 resulted in the lowest ruminal N-NH3 concentration and the lowest microbial N flow to the duodenum. Milk yield was 8.5% higher from cows in T100 and T75 compared with T50, but we observed no differences for milk fat or milk protein yield among treatments. Milk fat of cows fed T50 had 8% more unsaturated fatty acids (FA) than that of cows fed T100, mostly because of a higher content of monounsaturated FA. Additionally, cows in T50 had a higher concentration of linoleic acid, vaccenic acid, and rumenic acid than T100. Meanwhile, the concentration of linoleic acid and vaccenic acid in cows fed T75 was higher than T100. The milk fat of the cows fed T50 and T75 had a lower n-6:n-3 ratio than T100. We concluded that including up to 29% of FF in the total DMI in combination with a TMR did not affect the intake or digestion of nutrients or the productive response in dairy cows and resulted in a higher concentration of desirable FA from a consumer's perspective.  相似文献   

13.
Partial least squares regression estimates of milk and blood constituents using Fourier-transform mid-infrared (FTIR) analysis have shown promise as a tool for monitoring early-lactation excessive energy deficit in dairy herds. Our objective was to analyze milk via FTIR to determine the association of early-lactation predicted milk β-hydroxybutyrate (BHB) concentrations, predicted blood nonesterified fatty acid (NEFA) concentrations, and predicted milk de novo fatty acid (FA) percentages relative to total FA concentrations, with the risk of disease or removal in early lactation (hyperketonemia, displaced abomasum, metritis, culling, or death) and average daily milk yield during the first 15 wk of lactation. We enrolled 517 multiparous Holstein cows from 2 dairy farms in New York. Composite milk samples were collected twice weekly from 3 to 18 DIM for a total of 4 timepoints (T1, T2, T3, T4) and analyzed using FTIR spectrometry for milk BHB and FA composition and predicted blood NEFA. Blood samples were collected for hyperketonemia determination (BHB ≥ 1.2 mmol/L) using a handheld meter, and farm-diagnosed occurrence of disease or removal during the first 30 DIM and average daily milk yield during the first 15 wk of lactation were collected from herd management software. The incidence of disease or removal between 3 and 18 DIM was 20.2%. Explanatory models for disease or removal were developed for each predicted constituent of interest at each timepoint using fixed-effect multivariable Poisson regression. Repeated measures ANOVA models were developed for each predicted constituent to assess differences in average daily milk yield. For all timepoints, increased risk of disease or removal was associated with higher predicted milk BHB [relative risk (RR)T1 = 2.0; RRT2 = 3.4; RRT3 = 5.2; RRT4 = 9.1], higher predicted blood NEFA (RRT1 = 2.7; RRT2 = 2.5; RRT3 = 3.8; RRT4 = 10.0), and lower predicted milk de novo FA relative percentages (RRT1 = 2.9; RRT2 = 3.3; RRT3 = 5.8; RRT4 = 7.2). Average daily milk yield was increased for cows above the cut point for predicted milk BHB (2.1 kg/d) and predicted blood NEFA (3.5 kg/d) and below the cut point for de novo FA relative percentages (2.3 kg/d). Our results suggest that FTIR-predicted milk BHB, blood NEFA, and milk de novo FA relative percentages are promising indicators of subsequent disease or removal in early lactation; their positive relationship with milk yield warrants further exploration.  相似文献   

14.
The objective of this study was to evaluate different durations of whole raw soybeans (WS) supplementation during the prepartum period on nutrient digestibility, milk yield and composition, energy balance, blood metabolites, and oocyte and embryo quality of transition cows. Thirty-one Holstein cows were used in a completely randomized design and assigned to 4 experimental groups (G): G90, G60, G30, and G0 (control), supplemented with a diet containing 12% of WS from 90, 60, 30, and 0 d relative to the calving date, respectively. Cows were dried off 60 d before the expected calving date. After parturition, all cows were fed a diet containing 12% of WS until 84 DIM. Blood samples were collected on d ?49, ?35, ?21, ?14, ?7, 0, 7, 14, 21, 35, and 70 relative to partum. Ovum pick-ups were performed on d 21 ± 3, 42 ± 7, 63 ± 7, and 84 ± 7 of lactation. Different durations of WS supplementation did not affect DMI and apparent total-tract digestibility in either the pre- or postpartum periods. Duration of WS supplementation had no effect on milk yield and composition nor energy balance of cows. However, the duration of WS supplementation had several effects on milk fatty acid (FA) profile of cows, including a linear decrease in concentrations of cis-9 C18:1, unsaturated C18, total monounsaturated, and unsaturated FA. Further, the milk contents of cis-9,cis-12 C18:2 FA, cis-9,trans-11 C18:2 FA, and total polyunsaturated FA were increased when WS were fed to cows from 30 d but not from 60 or 90 d of the expected calving date. The length of WS supplementation in the prepartum period linearly increased blood cholesterol concentration of cows during the prepartum period, but it had no effect on blood glucose and nonesterified FA concentrations in the pre- and postpartum periods. Duration of WS supplementation during the prepartum period increased the average number of grade 2 oocytes, notably in G60, but it had no effect on embryo production and cleavage proportion of early-lactation cows. The duration of WS supplementation in the prepartum period had no effect on milk yield and energy balance of the subsequent lactation, but it altered milk FA profile in early lactation by decreasing unsaturated FA content, notably when starting to supplement WS at 90 and 60 d from the expected calving date. Our results also showed that the duration of WS supplementation during the prepartum period does not improve oocyte quality in the subsequent lactation of cows.  相似文献   

15.
The aim of this paper was to evaluate the effects of automatic milking (AM) on milk enzymes and minerals related to mammary epithelial integrity in comparison with twice-daily conventional milking (CM). One cow from each of 6 pairs of twins was assigned to be milked with AM or with CM throughout first lactation. Milk production was recorded and milk samples were collected at 4, 11, 18, 25, 32, and 39 wk of lactation (WOL) to determine fat and protein content, somatic cell count, pH, plasminogen (pl) and plasmin (Pl) activities, Na, K, and Cl. Body condition score was monitored; blood samples were collected to determine energy-related metabolites in the first third of lactation (14 WOL), and plasma oxidative status throughout lactation. Overall mean and standard deviation of milking frequency (MF) in AM were 2.69 and 0.88, respectively. Milk production, fat and protein contents, and somatic cell count did not differ between milking systems. The pl and pl+Pl activities were lesser in AM than in CM. Milk pH was greater in AM than in CM. Milk Na, K, Na/K ratio, and Cl did not differ across the whole lactation. Milk pH had a positive correlation with milk Pl activity (r = 0.41), Na (r = 0.37), and Cl (r = 0.40) concentration, and negative correlation with the log10 of pl/Pl ratio (r = −0.47). The milk Na/K ratio had a positive correlation (r = 0.55) with milk Pl activity. Milking system (MS) did not seem to affect mammary epithelial permeability. The differences in enzymatic (proteolytic) activity due to the MS, probably related to daily MF, lead one to suppose that the quality of the protein fraction for the cheese-making process was preserved better with AM than with CM, even if differences in pH might negatively interfere. No difference was detected in BCS, and in plasma concentration of triglycerides and nonesterified fatty acids, whereas plasma cholesterol concentration during the first 10 WOL was lesser in AM than CM. Oxidative status, measured by plasma reactive oxygen metabolites and thiol groups, did not differ between MS throughout the whole lactation. These results suggest that early lactation of AM primiparous cows may give rise to crucial situations: for milk production, when a low MF may impair further mammary cell proliferation; for milk quality, if an irregular MF, with prolonged milking intervals, leads to an increased milk pH with increased conversion of pl to Pl.  相似文献   

16.
We aimed to compare the effects of ground (GC) or cracked corn (CC), with or without flaxseed oil (FSO), on milk yield, milk and plasma fatty acid (FA) profile, and nutrient digestibility in Jersey cows fed diets formulated to contain similar starch concentrations. Twelve multiparous organic-certified Jersey cows averaging (mean ± standard deviation) 455 ± 41.9 kg of body weight and 152 ± 34 d in milk and 4 primiparous organic-certified Jersey cows averaging (mean ± standard deviation) 356 ± 2.41 kg of body weight and 174 ± 30 d in milk in the beginning of the experiment were used. Cows were randomly assigned to treatment sequences in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments. Each period lasted 24 d with 18 d for diet adaptation and 6 d for data and sample collection. Treatments were fed as total mixed rations consisting of (dry matter basis): (1) 0% FSO + 27.1% GC, (2) 0% FSO + 28.3% CC, (3) 3% FSO + 27.1% GC, and (4) 3% FSO + 28.3% CC. All cows were offered 55% of the total diet dry matter as mixed grass-legume baleage and treatments averaged 20% starch. Significant FSO × corn grain particle size interactions were observed for some variables including milk concentration of lactose and proportions of cis-9,cis-12,cis-15 18:3 in milk and plasma. The proportion of cis-9,cis-12,cis-15 18:3 in milk and plasma decreased slightly when comparing GC versus CC in 0% FSO cows, but a larger reduction was observed in 3% FSO cows. Dry matter intake did not differ and averaged 16.1 kg/d across diets. Feeding 3% FSO increased yields of milk and milk fat and lactose and feed and milk N efficiencies, but decreased fat, true protein, and MUN concentrations and apparent total-tract digestibility of fiber. The Σ branched-chain, Σ<16C, Σ16C, and Σn-6 FA decreased, whereas Σ18C, Σcis-18:1, and Σtrans-18:1 FA increased in 3% versus 0% FSO cows. No effect of corn particle size was observed for production and milk components. However, the apparent total-tract digestibility of starch was greater in GC than CC cows. Compared with CC, GC increased Σ branched-chain, Σ<16C, Σ16C, Σn-6 FA, and decreased Σ18C and Σ cis-18:1 FA in milk fat. Overall, results of this study are more directly applicable to dairy cows fed low starch, mixed grass-legume baleage-based diets.  相似文献   

17.
《Journal of dairy science》2023,106(9):6577-6591
The causes of variation in the milk mineral profile of dairy cattle during the first phase of lactation were studied under the hypothesis that the milk mineral profile partially reflects the animals' metabolic status. Correlations between the minerals and the main milk constituents (i.e., protein, fat, and lactose percentages), and their associations with the cows' metabolic status indicators were explored. The metabolic status indicators (MET) that we used were blood energy-protein metabolites [nonesterified fatty acids, β-hydroxybutyrate (BHB), glucose, cholesterol, creatinine, and urea], and liver ultrasound measurements (predicted triacylglycerol liver content, portal vein area, portal vein diameter and liver depth). Milk and blood samples, and ultrasound measurements were taken from 295 Holstein cows belonging to 2 herds and in the first 120 d in milk (DIM). Milk mineral contents were determined by ICP-OES; these were considered the response variable and analyzed through a mixed model which included DIM, parity, milk yield, and MET as fixed effects, and the herd/date as a random effect. The MET traits were divided in tertiles. The results showed that milk protein was positively associated with body condition score (BCS) and glucose, and negatively associated with BHB blood content; milk fat was positively associated with BHB content; milk lactose was positively associated with BCS; and Ca, P, K and S were the minerals with the greatest number of associations with the cows' energy indicators, particularly BCS, predicted triacylglycerol liver content, glucose, BHB and urea. We conclude that the protein, fat, lactose, and mineral contents of milk partially reflect the metabolic adaptation of cows during lactation and within 120 DIM. Variations in the milk mineral profile were consistent with changes in the major milk constituents and the metabolic status of cows.  相似文献   

18.
《Journal of dairy science》2021,104(9):9813-9826
The present study investigated the effect of a high proportion of different forage species in the diet, parity, milking time, and days in milk (DIM) on milk fatty acid (FA) profile, and transfer efficiency of C18:2n-6, C18:3n-3, n-6, and n-3 in dairy cows. Swards with perennial ryegrass [early maturity stage (EPR) and late maturity stage (LPR)], festulolium, tall fescue (TF), red clover (RC), and white clover (WC) were cut in the primary growth, wilted, and ensiled without additives. Thirty-six Danish Holstein cows in an incomplete Latin square design were fed ad libitum with total mixed rations containing a high forage proportion (70% on dry matter basis). The total mixed rations differed only in forage source, which was either 1 of the 6 pure silages or a mixture of LPR silage with either RC or WC silage (50:50 on dry matter basis). Proportion of C18:2n-6 in milk FA was affected by diet, and RC and WC diets resulted in the highest proportion of C18:2n-6 in milk FA (21.6 and 21.8 g/kg of FA, respectively). The highest and lowest milk C18:3n-3 proportion was observed in WC and LPR, respectively. In addition, WC diet resulted in highest transfer efficiency of C18:3n-3 from feed to milk (12.2%) followed by RC diet (10.7%), whereas EPR diet resulted in the lowest transfer efficiency of C18:3n-3 (3.45%). The highest milk proportion of cis-9,trans-11 conjugated linoleic acid (CLA) was observed in cows fed TF (3.20 g/kg of FA), which was 23 to 64% higher than the proportion observed in the cows fed the other diets. The highest α-tocopherol concentration (µg/mL) in milk was observed in EPR (1.15), LPR (1.10), and festulolium (1.06). Primiparous cows showed higher proportion of cis-9,trans-11 CLA (2.63 g/kg of FA) than multiparous cows (2.21 g/kg of FA). Cows early in lactation had a higher proportion of long-chain FA in milk than cows later in lactation, as long-chain FA decreased with 0.184 g/kg of FA per DIM, whereas medium-chain FA increased with 0.181 g/kg of FA per DIM. Proportion of C18:2n-6 in milk from evening milking was higher than in milk from morning milking (16.7 vs. 15.8 g/kg of FA). In conclusion, the results showed that milk FA profile of cows was affected by forage source in the diet, and RC and WC increased the health-promoting FA components, particularly n-3, whereas the TF diet increased proportion of CLA isomers in milk. Proportion of CLA isomers in milk FA from primiparous cows was higher than in milk from multiparous cows. In addition, evening milk contained more FA originating from diets compared with morning milk.  相似文献   

19.
Objectives were to evaluate the effect of feeding rumen-protected methionine (RPM) in pre- and postpartum total mix ration (TMR) on lactation performance and plasma AA concentrations in dairy cows. A total of 470 multiparous Holstein cows [235 cows at University of Wisconsin (UW) and 235 cows at Cornell University (CU)] were enrolled approximately 4 wk before parturition, housed in close-up dry cow and replicated lactation pens. Pens were randomly assigned to treatment diets (pre- and postpartum, respectively): UW control (CON) diet = 2.30 and 2.09% of Met as percentage of metabolizable protein (MP) and RPM diet = 2.83 and 2.58% of Met as MP; CU CON = 2.22 and 2.19% of Met as percentage of MP, and CU RPM = 2.85 and 2.65% of Met as percentage of MP. Treatments were evaluated until 112 ± 3 d in milk (DIM). Milk yield was recorded daily. Milk samples were collected at wk 1 and 2 of lactation, and then every other week, and analyzed for milk composition. For lactation pens, dry matter intake (DMI) was recorded daily. Body weight and body condition score were determined from 4 ± 3 DIM and parturition until 39 ± 3 and 49 DIM, respectively. Plasma AA concentrations were evaluated within 3 h after feeding during the periparturient period [d ?7 (±4), 0, 7 (±1), 14 (±1), and 21 (±1); n = 225]. In addition, plasma AA concentrations were evaluated (every 3 h for 24 h) after feeding in cows at 76 ± 8 DIM (n = 16) and within 3 h after feeding in cows at 80 ± 3 DIM (n = 72). The RPM treatment had no effect on DMI (27.9 vs. 28.0 kg/d) or milk yield (48.7 vs. 49.2 kg/d) for RPM and CON, respectively. Cows fed the RPM treatment had increased milk protein concentration (3.07 vs. 2.95%) and yield (1.48 vs. 1.43 kg/d), and milk fat concentration (3.87 vs. 3.77%), although milk fat yield did not differ. Plasma Met concentrations tended to be greater for cows fed RPM at 7 d before parturition (25.9 vs. 22.9 µM), did not differ at parturition (22.0 vs. 20.4 µM), and were increased on d 7 (31.0 vs. 21.2 µM) and remained greater with consistent concentrations until d 21 postpartum (d 14: 30.5 vs. 19.0 µM; d 21: 31.0 vs. 17.8 µM). However, feeding RPM decreased Leu, Val, Asn, and Ser (d 7, 14, and 21) and Tyr (d 14). At a later stage in lactation, plasma Met was increased for RPM cows (34.4 vs. 16.7 µM) consistently throughout the day, with no changes in other AA. Substantial variation was detected for plasma Met concentration (range: RPM = 8.9–63.3 µM; CON = 7.8–28.8 µM) among cows [coefficient of variation (CV) > 28%] and within cow during the day (CV: 10.5–27.1%). In conclusion, feeding RPM increased plasma Met concentration and improved lactation performance via increased milk protein production.  相似文献   

20.
Previously observed strong relationships between dry matter (DM) intake and milk yield in dairy cows were the basis for this meta-analysis aimed to determine the influence of intake of specific dietary nutrients on milk yield and milk protein yield in Holstein dairy cows. Diets (563) from feeding trials published in the Journal of Dairy Science were evaluated for nutrient composition using 2 diet evaluation programs. Intake of nutrients was estimated based on DM intake and program-derived diet composition. Data were analyzed with and without the effect of stage of lactation. Models based on intake of nutrients improved prediction of milk yield and milk protein yield compared with DM intake alone. Intake of net energy of lactation was the dominant variable in milk yield prediction models derived from both diet evaluation models. Milk protein yield models also improved prediction over the DM intake model. These models were dominated by ruminally undegradable protein intake and included a number of energy-related intake variables. In most models, incorporating stage of lactation improved the model fit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号