首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of κ-carrageenan concentration (0-7.5 g kg−1) on the rheology, microstructure, texture and oxidative stability of water-in-oil (W/O) spreads (600 g fat kg−1 emulsion) was examined over 60 days storage time. Results showed that increasing the κ-carrageenan concentration to 7.5 g kg−1 significantly increased the viscosity of the aqueous phase (to 42.7 mPa s at 60 °C) resulting in gelation of the aqueous phase on cooling. The microstructure of the spreads was disrupted by higher levels of κ-carrageenan, resulting in a less homogeneous distribution of the aqueous phase. Melt temperature (where tan δ > 1) decreased significantly from 62 to 56.2 °C with increasing κ-carrageenan concentration from 0 to 7.5 g kg−1. The firmness and the G′ at 6 °C for all samples were significantly increased after 60 days storage with only small effects due to κ-carrageenan levels. Oxidation of the fat phase was evident by the significant increases in peroxide values of all spreads on storage, with κ-carrageenan exhibiting no antioxidant behaviour. While increased κ-carrageenan levels modified the microstructure of W/O spreads in terms of the droplet size of the aqueous phase and its distribution few changes were evident in the continuous fat phase.  相似文献   

2.
3.
In order to know the performance of the new regenerated protein and cellulose composite fiber, to prepare for the production of textiles, the appearance, infrared spectrum, thermal properties and tensile properties of the new regenerated protein and cellulose composite fiber were tested and analyzed. The results showed that; the surface morphology and microstructure of the new regenerated protein and cellulose composite fiber which protein content was 10% were similar to viscose fiber, there were a lot of typical characteristics of viscose fiber in the new regenerated protein and cellulose composite fiber. The characteristic peak of protein can be found in the infrared spectrogram. Compared with the ordinary viscose fiber, the new regenerated protein and cellulose composite fiber had not effect on surface morphology and tensile properties. The protein powder particles may increase the fiber fineness unevenness, improve the thermal stability of the fiber in a certain extent. Tensile properties of the new regenerated protein and cellulose composite fiber decreased and rigidity increased.  相似文献   

4.
Lipid oxidation and discoloration are two important problems in the storage of pastırma, a meat product. In this research, the usability of lyophilized red beet water extract (LRBWE) in cemen paste and its effects on the pastırma quality (especially colour, protein and lipid oxidation, microbial and sensory properties) were investigated during storage. Two trials were conducted; in trial 1, LRBWE was obtained, its various properties were designated and effects on the cemen paste of these extracts (0.0%, 0.4%, 0.6%, 0.8% 1.0% and 1.2%) were determined. In trial 2, pastırma with cemen paste containing 0.8%, 1.0% and 1.2% LRBWE were produced and stored at 4 ± 1 °C for 150 days. The LRBWE did not influence protein oxidation of pastırma, whereas increasing LRBWE level led to a decrease in lipid oxidation (P < 0.01), and an increase in redness (a1) value (P < 0.01) and sensory properties (P < 0.01) of sliced pastırma compared with control pastırma. These results revealed that the addition of 1.0% or 1.2% LRBWE to cemen paste was effective to improve the colour stability, lipid oxidation, microbial and sensory quality of pastırma during storage.  相似文献   

5.
Oleogels of β-sitosterol (Sit) and beeswax (BW) were combined at varying ratios (w/w) and added to sunflower oil (SFO) at concentrations of 10 g per 100 g and 20 g per 100 g oil to prepare oleogels (Sit/BW/SFO). Structural and thermal properties were characterised and results showed that the hardness and enthalpy of oleogels were affected by the amount of β-sitosterol and beeswax in the oleogelator combination (Sit/BW, w/w). Oleogels with beeswax as the only oleogelator (Sit0/BW10) had the highest hardness and maximum enthalpy change. Gel network form was influenced by the crystalline behaviour of the oleogelator, and Sit0/BW10-oleogel was densely packed, spherical and white while Sit10/BW0-oleogel displayed a needle shape. X-ray diffraction patterns showed that the oleogel width of the crystals and D-spacing increased with increasing amounts of β-sitosterol and the FTIR spectra revealed that oleogels formed via non-covalent bonding and may be stabilised with physical entanglements.  相似文献   

6.
Interactions between plant-based proteins (PP) and phenolic compounds (PC) occur naturally in many food products. Recently, special attention has been paid to the fabrication of PP–PC conjugates or complexes in model systems with a focus on their effects on their structure, functionality, and health benefits. Conjugates are held together by covalent bonds, whereas complexes are held together by noncovalent ones. This review highlights the nature of protein–phenolic interactions involving PP. The interactions of these PC with the PP in model systems are discussed, as well as their impact on the structural, functional, and health-promoting properties of PP. The PP in conjugates and complexes tend to be more unfolded than in their native state, which often improves their functional attributes. PP–PC conjugates and complexes often exhibit improved in vitro digestibility, antioxidant activity, and potential allergy-reducing activities. Consequently, they may be used as antioxidant emulsifiers, edible film additives, nanoparticles, and hydrogels in the food industry. However, studies focusing on the application of PP–PC conjugates and complexes in real foods are still scarce. Further research is therefore required to determine the structure–function relationships of PP–PC conjugates and complexes that may influence their application as functional ingredients in the food industry.  相似文献   

7.
The impact of addition of two lupin protein isolates (LPI), enriched either in proteins belonging to globulin (LPI G) or to albumin (LPI A) fraction, on wheat flour dough and bread characteristics was investigated. LPI addition increased the dough development time and stability plus the resistance to deformation and the extensibility of the dough. The presence of LPI proteins in dough affected bread quality in terms of volume, internal structure and texture, while extra gluten addition to the blends to compensate for wheat gluten dilution, resulting from LPI addition, led to an improvement of bread quality characteristics. Generally, the incorporation of LP isolates to wheat flour delayed bread firming. The results obtained are discussed in terms of a possible action of LPI particles as a filler of the gluten network and partly in terms of possible interactions that take place between the gluten protein constituents and those of lupin.  相似文献   

8.
9.
This study evaluated the stability of bilayer emulsions as a function of secondary layer composition and pH. Primary emulsions were formulated with 5% soybean oil, 1% protein from nonfat dry milk (NDM) powder as emulsifier and ι-carrageenan (ι-carr), low-methoxyl pectin (LMp), high-methoxyl pectin (HMp), or gelatin as secondary layers. ζ-Potential values increased for each emulsion as the pH decreased, with ι-carr emulsions being consistently more negatively charged than primary emulsions and significantly more stable. ζ-Potential values were not always correlated to emulsion stability. Gelatin secondary emulsions at pH 3 and HMp secondary emulsions at pH 7 were unstable due to the presence of depletion flocculation. In addition, LMp secondary emulsions stability at pH 7 might be due to calcium bridging, which increased the emulsion's viscosity. Overall, the stability of NDM emulsions was improved when ι-carr and LMp were used as secondary layers at pH 7 and 5, and when ι-carr and HMp were used as secondary layers at pH 3. Increased stability of these systems can be attributed to a second homogenization step used to formulate the secondary emulsions and to the presence of Ca(+2) in the NDM. Results from this research show that the stability of bilayer emulsions is driven by the presence of depletion flocculation, droplet charge, droplet size and distribution and viscosity. PRACTICAL APPLICATION: The use of everyday ingredients (nonfat dry milk powder, gelatin, pectin, and carrageenan), which are understood and accepted by the average consumer, creates label-friendly products that are the wave of the future. Stable emulsions can be formed using these ingredients at various pH. Understanding the stability and how the pH impacts the physicochemical characteristics and stability of these emulsions will enable manufactures to use ordinary ingredients to create healthier products (for example, low-fat dressings, sauces, dips, and beverages).  相似文献   

10.
The rheological behaviour of commercial milk protein/κ-carrageenan mixtures in aqueous solutions was studied at neutral pH. Four milk protein ingredients; skim milk powder, milk protein concentrate, sodium caseinate, and whey protein isolate were considered. As seen by confocal laser microscopy, mixtures of κ-carrageenan with skim milk powder, milk protein concentrate, and sodium caseinate showed phase separation, but no phase separation was observed in mixtures containing whey protein isolate. For κ-carrageenan concentrations up to 0.5 wt%, the viscosity of the mixtures at low shear rates increased markedly in the case of skim milk powder and milk protein concentrate addition, but did not change by the addition of sodium caseinate or whey protein isolate. For κ-carrageenan concentrations from 1 to 2.5 wt%, small and large deformation rheological measurements, performed on the milk protein/κ-carrageenan gels, showed that skim milk powder, milk protein concentrate or sodium caseinate markedly improved the strength of the resulting gels, but whey protein isolate had no effect on the gel stength.  相似文献   

11.
12.
Denaturation and consequent aggregation in whey protein solutions is critical to product functionality during processing. Solutions of whey protein isolate (WPI) prepared at 1, 4, 8, and 12% (wt/wt) and pH 6.2, 6.7, or 7.2 were subjected to heat treatment (85°C × 30 s) using a pilot-scale heat exchanger. The effects of heat treatment on whey protein denaturation and aggregation were determined by chromatography, particle size, turbidity, and rheological analyses. The influence of pH and WPI concentration during heat treatment on the thermal stability of the resulting dispersions was also investigated. Whey protein isolate solutions heated at pH 6.2 were more extensively denatured, had a greater proportion of insoluble aggregates, higher particle size and turbidity, and were significantly less heat-stable than equivalent samples prepared at pH 6.7 and 7.2. The effects of WPI concentration on denaturation/aggregation behavior were more apparent at higher pH where the stabilizing effects of charge repulsion became increasingly influential. Solutions containing 12% (wt/wt) WPI had significantly higher apparent viscosities, at each pH, compared with lower protein concentrations, with solutions prepared at pH 6.2 forming a gel. Smaller average particle size and a higher proportion of soluble aggregates in WPI solutions, pre-heated at pH 6.7 and 7.2, resulted in improved thermal stability on subsequent heating. Higher pH during secondary heating also increased thermal stability. This study offers insight into the interactive effects of pH and whey protein concentration during pilot-scale processing and demonstrates how protein functionality can be controlled through manipulation of these factors.  相似文献   

13.
Food foams such as marshmallow, Chantilly and mousses have behavior and stability directly connected with their microstructure, bubble size distribution and interfacial properties. A high interfacial tension inherent to air/liquid foams interfaces affects its stability, and thus it has a direct impact on processing, storage and product handling. In this work, the interactions of egg albumin with various types of polysaccharides were investigated by drop tensiometry, interfacial rheology and foam stability. The progressive addition of egg albumin and polysaccharide in water induced a drop of the air–water surface tension which was dependent on the pH and polysaccharide type. At pH 4, that is below the isoeletric point of egg albumen (pI = 4.5) the surface tension was decreased from 70 mN/m to 42 mN/m by the presence of the protein, and from 70 mN/m to 43 mN/m, 40 mN/m and 38 mN/m by subsequent addition of xanthan, guar gum and κ-carrageenan, respectively. At pH 7.5 the surface tension was decreased from 70 mN/m to 43 mN/m by the simultaneous presence of the protein and κ-carrageenan. However, a higher surface tension of 48 and 50 mN/m was found when xanthan and guar gum were added, respectively, when compared with carrageenan addition. The main role on the stabilization of protein–polysaccharide stabilized interfaces was identified on the elasticity of the interface. Foam stability experiments confirmed that egg-albumin/κ-carrageenan at pH below the protein isoeletric point are the most efficient systems to stabilize air/water interfaces. These results clearly indicate that protein–polysaccharide coacervation at the air/water interface is an efficient process to increase foam stability.  相似文献   

14.
BACKGROUND: Cyclodextrins (CDs) are able to enhance the solubility, stability and bioavailability of several bioactive hydrophobic compounds by complex formation. They can also be used for removal of undesired components (such as cholesterol, off‐flavors or bitter components) present in foods. Although many patents account for the use of cyclodextrins for removal of cholesterol from dairy foods, there is no available information on the effect of water on encapsulation efficiency and on the stability of sterols in CDs. The aim of this work was to study the inclusion properties and the factors affecting the encapsulation and stability of cholesterol in β‐cyclodextrin (BCD). The optimum encapsulation conditions (ligand–CD molar ratio, stirring time and temperature), and stability of the complexes as a function of storage time and water content were analyzed. RESULTS: Phase solubility study pointed out the formation of 1:1 stoichiometric complexes between cholesterol and β‐cyclodextrin, which was influenced by temperature variations. The process was shown to be exothermic and energetically favored. The presence of cholesterol greatly modified the BCD water sorption curves, being the amount of adsorbed water smaller in the combined systems. The principal ‘driving force’ for complex formation is the substitution of the high‐enthalpy water molecules by an appropriate hydrophobic ligand. The freeze‐dried complexes probed to be stable at different storage conditions. CONCLUSION: The phase solubility and stability data obtained could be essential for selecting the most suitable conditions when CDs are employed either for removing cholesterol or to incorporate functional ingredients (i.e. sitosterol) in the development of innovative food products. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
The formation of electrostatic complexes between whey protein isolate (WPI) and (κ-, ι-, λ-type) carrageenan (CG) was investigated by turbidimetric measurements as a function of pH (1.5–7.0), biopolymer weight-mixing ratio (1:1–75:1 WPI:CG) and NaCl addition (0–500 mM) to better elucidate underlying mechanisms of interaction. Emulsion stabilizing effects of formed complexes was also studied to assess their potential as emulsifiers. Complex formation followed two pH-dependent structure-forming events associated with the formation of soluble (pHc) and insoluble (pH?1) complexes. For both the WPI–κ-CG and WPI–ι-CG mixtures, pHc and pH?1 occurred at pH 5.5 and 5.3, respectively, whereas in the WPI–λ-CG mixture values were slightly higher (pHc = 5.7; pH?1 = 5.5). In all mixtures, maximum turbidity was found to occur near pH 4.5, before declining at lower pHs. Biopolymer mixing ratios corresponding to maximum OD was found to occur at the 12:1 ratio for both the WPI–κ-CG and WPI–λ-CG mixtures, and 20:1 ratio for WPI–ι-CG mixture. The addition of NaCl disrupted complexation within WPI–κ-CG mixtures as levels were raised, whereas when ι-CG and λ-CG was present, complexation was enhanced up to a critical Na+ concentration before declining. Adsorption of CG chains to the small WPI–WPI aggregates during complexation was proposed to be related to both the linear charge density and conformation of the CG molecules involved. Emulsion stability in the mixed systems (12:1 mixing ratio), regardless of the CG type (κ, ι, λ), was significantly higher than individual WPI solutions indicating enhanced ability to stabilize the oil-in-water interface.  相似文献   

16.
17.
The present study compared the texture and functional properties of mozzarella cheese made with milk containing different of genetic polymorphisms κ-casein (AA, AB, AE or BE). The genotype of κ-casein in the milk from individual Holstein cow was determined by pyrosequencing method. Full-fat Mozzarella cheese was made from pooled milk from 3 cows with the same κ-casein genotype and analysed 7 d after manufacture. The cheese made from type AB contained the highest level of fat and Ca/protein, and the lowest moisture content. The cheese made from type AB milk was harder and chewier than cheese made from type AE and BE milk. The cheese made from type AB and AA milk had higher stretchability but lower meltability and flowability than type AE and BE. In summary, the cheese made from type AB milk had different texture and functionality quality than that made from type AE or BE.  相似文献   

18.
In order to enhance the solubility and bioavailability of phytosterols (PS), cyclodextrin–PS (CD–PS) inclusion complexes were prepared and the properties of PS-β-cyclodextrin (PS-β-CD) and the inclusion mechanism of its derivative hydroxypropyl β-cyclodextrin (PS-HP-β-CD) in solution were also evaluated. The effects of crucial parameters on cyclodextrin–sterol inclusion efficiency were optimized, including solvent type, β-CD/PS molar ratio, temperature, PS content and reaction time; 92–98?% inclusion efficiency was achieved under the conditions of HP-β-CD/PS ratio 3:1–4:1, PS concentration 15–20?mM, temperature 50–55?°C, reaction time 12?h. For β-CD host, butanol was a good solvent for PS inclusion reaction. The properties of CD–PS inclusion complexes were characterized by differential scanning calorimetric, scanning electron microscopy, UV–Vis scanning spectrophotometer (UV–Vis) and fourier transform infrared spectroscopy (FT-IR), which demonstrated that there are intermolecular hydrogen bonds between PS and HP-β-CD in inclusion complex, resulting in the formation of amorphous form. To clarify the mechanism of the increase in the solubility and bioactivity of HP-β-CD–PS inclusion complexes, the structure of CD as well as the interaction of the HP-β-CD–PS inclusion formation was elucidated. The conclusions indicated that PS-HP-β-CD showed higher water solubility with greater solubilizing and complexing capabilities than PS-β-CD and PS itself.  相似文献   

19.
Yu H  Li J  Shi K  Huang Q 《Food & function》2011,2(7):373-380
The micelle structure of octenyl succinic anhydride modified ε-polylysine (M-EPL), an anti-microbial surfactant prepared from natural peptide ε-polylysine in aqueous solution has been studied using synchrotron small-angle X-ray scattering (SAXS). Our results revealed that M-EPLs formed spherical micelles with individual size of 24-26 ? in aqueous solution which could further aggregate to form a larger dimension with averaged radius of 268-308 ?. Furthermore, M-EPL micelle was able to encapsulate curcuminoids, a group of poorly-soluble bioactive compounds from turmeric with poor oral bioavailability, and improve their water solubility. Three loading methods, including solvent evaporation, dialysis, and high-speed homogenization were compared. The results indicated that the dialysis method generated the highest loading capacity and curcuminoids water solubility. The micelle encapsulation was confirmed as there were no free curcuminoid crystals detected in the differential scanning calorimetry analysis. It was also demonstrated that M-EPL encapsulation stabilized curcuminoids against hydrolysis at pH 7.4 and the encapsulated curcuminoids showed elevated cellular antioxidant activity compared with free curcuminoids. This work suggested that M-EPL could be used as new biopolymer micelles for delivering poorly soluble drugs/phytochemicals and improving their bioactivities.  相似文献   

20.
In this work, the impact of the industrial freezing process on structure, texture and total antioxidant capacity was studied using green asparagus stems, zucchini and green beans. Samples were analysed as raw/uncooked, blanched, raw/boiled and industrially frozen/boiled.A consistent damage of the vegetable tissue was revealed by the histological analysis on vegetables boiled after freezing. The cells appeared to be dehydrated, contracted and separated at different levels depending on the anatomical structure of each vegetable.The initial textural quality was partially retained in all blanched vegetables, and enhanced in cut tested asparagus stems, in relation to the action of phenolic acids at cell wall level. Raw/boiled and industrially frozen/boiled asparagus stems exhibited comparable forces of penetration and cut tests. On the other hand, zucchini, both raw and frozen, completely softened after boiling making the texture measurement impossible. Industrially frozen/boiled green beans showed higher values of cut and penetration forces, probably due to a higher presence of swollen cell walls, in comparison to those raw/boiled.Blanching and boiling significantly increased the ferric reducing antioxidant power values of asparagus stems and green beans compared to uncooked/raw samples, while boiling after the freezing process significantly deprived both vegetables of the initial antioxidant capacity. On the other hand, boiling the frozen zucchini proved to be detrimental to the antioxidant capacity.In conclusion, manufacturers and researchers should join together to develop specific industrial freezing process conditions according to the matrix of each vegetable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号