首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The objective of this study was to examine the association between increased physical activity at the moment of timed artificial insemination (AI), detected by an automated activity monitor (AAM), and fertility outcomes. This paper also investigated factors affecting estrous expression in general. A total of 1,411 AI events from 1,040 lactating Holstein cows were recorded, averaging 1.3 ± 0.6 (±standard deviation) events per cow. Activity (measured as steps/h) was monitored continuously by a leg-mounted AAM located on the rear leg of the cow. Ovulation was synchronized by a timed AI protocol based on estradiol and progesterone. Ovarian ultrasonography was performed in all cows on d ?11 (AI = d 0) and in a subset of cows on d 0 (n = 588) and d 7 (n = 819) to determine the presence of a corpus luteum and follicles. The body condition score (1 to 5 scale) was assessed on d 0 and a blood sample was collected for progesterone measurement on d 7. Using the AAM, an estrus event was determined when the relative increase (RI) in physical activity of the cow exceeded 100% of the baseline activity. The physical activity was classified as strong RI (≥300% RI), moderate RI (100–300% RI), or no estrus (<100% RI). Milk production was measured daily and averaged between d ?11 and 0. Pregnancy was diagnosed at 32 and 60 d post-AI and pregnancy losses were calculated. The mean RI at estrus was 328.3 ± 132.1%. Cows with strong RI had greater pregnancy per AI than those with moderate RI and those that did not express estrus (35.1 vs. 27.3 vs. 6.2%). When including only cows that successfully ovulated after timed AI, those that displayed strong intensity RI still had greater pregnancy per AI than those with moderate intensity RI or those that did not express estrus (45.1 vs. 34.8 vs. 6.2%). Cows expressing strong RI at timed AI had greater ovulation rates compared with moderate RI and cows that did not express estrus (94.9 vs. 88.2 vs. 49.5%). Furthermore, pregnancy losses were reduced in cows with strong RI compared with cows expressing moderate RI (13.9 vs. 21.7%). Cows with a strong RI at estrus were more likely to have a corpus luteum at the beginning of the protocol and had greater concentration of progesterone 7 d post-AI. Multiparous cows expressed lower RI compared with primiparous cows. Cows with lower body condition score tended to have decreased RI at estrus. No correlation between estrous expression and pre-ovulatory follicle diameter was observed. Also, no correlation was observed between milk production at AI and RI. In conclusion, strong intensity RI of estrus events at timed AI was associated with improved ovulation rates and pregnancy per AI, and reduced pregnancy losses. These results provide further evidence that measurements of estrous expression can be used to predict fertility at the time of AI and possibly be used as a tool to assist decision making strategies of reproduction programs.  相似文献   

2.
《Journal of dairy science》2023,106(7):5115-5126
This study aimed to determine the effect of 2 simple breeding strategies combining artificial insemination (AI) after detection of estrus (AIED) and timed AI (TAI) on first-service fertility in lactating Holstein cows. Weekly, lactating Holstein cows (n = l,049) between 40 and 46 d in milk (DIM) were randomly assigned to initiate 1 of 2 breeding strategies for first service: Presynch-14 and PG+G. Presynch-14 is a presynchronization strategy with 2 PGF treatments 14 d apart with the last PGF 14 d before the initiation of the Ovsynch protocol. Cows treated with PG+G receive a simpler presynchronization program that uses PGF and GnRH simultaneously 7 d before Ovsynch. In both treatments, cows detected in standing estrus by tail chalk at any time ≥55 DIM were inseminated, and treatment was discontinued (n = 525). Cows completing treatment received TAI from 78 to 84 DIM (n = 526). In a subgroup of cows that received TAI, blood was collected (n = 163) to assess circulating concentrations of progesterone, and ultrasonographic evaluations of ovaries were performed on the day of first GnRH of Ovsynch (n = 162) and PGF of Ovsynch (n = 122). The proportion of cows that received TAI was greater for PG+G compared with Presynch-14 (63.5 vs. 31.9%), which increased DIM at first service for cows treated with PG+G compared with Presynch-14 (75.5 ± 0.4 vs. 68.7 ± 0.4). For cows receiving TAI, the ovulatory response to first GnRH of Ovsynch (73.8 vs. 48.8%) and the proportion of cows with functional corpora lutea (92.6 vs. 73.1%) were greater for PG+G than Presynch-14. Cows treated with PG+G had greater overall pregnancy per AI (P/AI) 42 ± 7 d after AI (40.2 vs. 33.6%) and calving per AI (32.1 vs. 25.2%) than Presynch-14. For cows receiving AIED, treatment did not affect P/AI 42 ± 7 d after AI. However, for cows receiving TAI, PG+G increased P/AI compared with Presynch-14 (44.6 vs. 35.2%). Overall, cows receiving TAI had greater P/AI 42 ± 7 d after AI (42.5 vs. 31.5%) and calving per AI (34.1 vs. 23.7%) and decreased pregnancy loss (16.8 vs. 25.2%) than cows receiving AIED. In summary, PG+G increased the proportion of cows receiving TAI and the DIM at first service, P/AI, and calving per AI compared with Presynch-14 when both TAI programs were combined with AIED.  相似文献   

3.
《Journal of dairy science》2023,106(6):4291-4305
The objective of this observational study was to evaluate the association between increased physical activity at first artificial insemination (AI) and subsequent pregnancy per AI (P/AI) in lactating Holstein cows following spontaneous estrus or a timed AI (TAI) protocol. We also wanted to identify factors associated with the intensity of activity increase (PA) captured by automated activity monitors (AAM) and fertility. Two experiments were conducted, in which cows either were inseminated based on the alert of the AAM system (AAM cows) or received TAI following a 7-d Ovsynch protocol (TAI cows) if not inseminated within a farm-specific period after calving. Experiment 1 included 2,698 AI services from AAM cows and 1,042 AI services from TAI cows equipped with the Smarttag Neck (Nedap Livestock Management) from a dairy farm in Slovakia (farm 1). In the second experiment, 6,517 AI services from AAM cows and 1,226 AI services from TAI cows fitted with Heatime (Heatime Pro; SCR Engineers Ltd.) from 8 dairy farms in Germany (farms 2–9) were included. Pregnancy diagnosis was performed on a weekly basis by transrectal ultrasound (farms 1, 3, 7, 8) or by transrectal palpation (farms 2, 4–6, 9). Estrous intensity was represented by the peak value of the change in activity. In experiment 1, PA was categorized into low (x-factor 0–20) and high (x-factor 21–100) PA, and in experiment 2 into low (activity change = 35–89) and high (activity change = 90–100) PA. In TAI cows from both experiments, PA was additionally categorized into cows with no AAM alert. Data were analyzed separately for AAM and TAI cows using multinomial logistic regression models for PA in TAI cows and logistic regression models for PA in AAM cows and P/AI in both groups. In experiment 1, P/AI of AAM cows was greater for AI services performed with conventional frozen semen (57.6%) compared with sexed semen (47.2%), whereas type of semen only tended to be associated with P/AI in TAI cows (54.4% conventional frozen semen vs. 48.9% sexed semen). In experiment 2, P/AI was greater for fresh semen (AAM cows: 44.4% vs. TAI cows: 44.2%) compared with conventional frozen semen (AAM cows: 37.6% vs. TAI cows: 34.6%). In both experiments, pregnancy outcomes were associated with PA. In experiment 1, AAM cows with high PA (55.1%) had greater P/AI than cows with low PA (49.8%). Within TAI cows, cows with no alert (38.8%) had reduced P/AI compared with cows with low (54.2%) or high PA (61.8%). In experiment 2, AAM cows with high PA (45.8%) had greater P/AI compared with cows with low PA (36.4%). Timed AI cows with no alert (27.4%) had decreased P/AI compared with cows with low (41.1%) or high (50.8%) PA. The greatest risk factors for high PA were parity (experiment 1) and season of AI (except for TAI cows from experiment 1). We conclude that high PA at the time of AI is associated with greater odds of pregnancy for both AAM and TAI cows. In both experiments, about 2 thirds of AAM cows (experiment 1: 69.9% and experiment 2: 70.7%) reached high PA, whereas only approximately one-third or less of TAI cows (experiment 1: 37.3% and experiment 2: 23.6%) showed high PA. Although we observed similar results using 2 different AAM systems for the most part, risk factors for high PA might differ between farms and insemination type (i.e., AAM vs. TAI).  相似文献   

4.
The objectives of this observational study were to assess the ability of automated activity monitoring (AAM) to detect estrus for first insemination, the accuracy of detection, and the optimum interval from the estrus alert from the AAM system to insemination. Four commercial farms using 1 of 2 commercial AAM systems were studied over 1 yr. Cows were inseminated between 55 and 80 d in milk (DIM) based on AAM only, then by a combination of AAM and timed artificial insemination (AI). Blood progesterone was measured in 1,014 cows at wk 5, 7, and 9 postpartum; purulent vaginal discharge (PVD) was assessed at wk 5; and lameness and BCS at wk 7. Overall, AAM detected 83% of cows in estrus by 80 DIM. Cows that had 3 serum progesterone <1 ng/mL, had PVD, or were both lame and had BCS ≤2.5 has lesser odds of being detected in estrus by 80 DIM (62, 68, and 53%, respectively). Blood samples were collected on the day of 445 AI based on AAM and 323 timed AI. The proportion of cows not in estrus (progesterone >1 ng/mL) on the day of AI was similar between AAM (4 ± 1.8%) and timed AI (3 ± 1.2%). Managers elected, based on subjective criteria, not to inseminate 17% of cows for which an AAM estrus alert was issued, of which 43% were not in estrus. Activity data were extracted from AAM software for 1,399 AI. Onset of estrus was calculated using the same or similar data processing criteria as the AAM system. Producers recorded the time of AI. The interval from onset of estrus to AI was categorized as 0 to 8, 8 to 16, or 16 to 24 h. We found no effect of AAM system on the probability of pregnancy per AI, but noted an interaction of interval with parity. For multiparous cows, the probability of pregnancy per AI was 31%, which did not differ with the interval to AI. For primiparous cows, the odds of pregnancy were greater if AI occurred 0 to 8 h (49%) than 8 to 16 (36%) or 16 to 24 h (31%) after the estrus alert from the AAM. Automated activity monitoring can detect estrus for first AI in just over the length of 1 estrous cycle for over 80% of cows, but the remainder would likely require intervention for timely insemination. For multiparous cows, performing AI based on AAM once per day would not affect pregnancy per AI, but for primiparous cows AI within 8 h of the onset of estrus may be advantageous.  相似文献   

5.
《Journal of dairy science》2022,105(7):6353-6363
The objectives of this study were to determine the effects of nerve growth factor-β (NGF), purified from bulls' seminal plasma and administered at the time of artificial insemination (AI), on progesterone post-AI, interferon-stimulated genes (ISG), and pregnancy per AI (P/AI) for lactating Holstein dairy cows enrolled in a timed-AI protocol. We hypothesized that administration of NGF at the time of AI would increase plasma progesterone post-AI, upregulate relative abundance of ISG, and improve P/AI in lactating dairy cows. Holstein cows (n = 557) from a single commercial dairy farm were blocked by parity and randomly assigned to receive an intramuscular injection containing 296 µg of bovine purified NGF at the time of AI, diluted in 2 mL of phosphate-buffered saline (NGF: n = 275), or receive only the 2 mL of phosphate-buffered saline (control: n = 282). Plasma progesterone and corpus luteum size were assessed in a subset of cows (NGF: n = 32; control: n = 36) at d 7, 14, and 19 post-AI. Relative mRNA abundance of ISG (ISG15, MX1, MX2, and RTP4) was assessed in peripheral blood leukocytes on d 19 post-AI. Pregnancy diagnosis was performed at 37 and 65 d post-AI. There was an interaction effect between treatment and parity for plasma progesterone; however, plasma progesterone and ISG did not differ between treatments. There were no effects of NGF for P/AI at 37 d post-AI (NGF = 40.0% vs. control = 41.6%), 65 d post-AI (NGF = 36.0% vs. control = 38.1%), and for pregnancy loss (NGF = 8.4% vs. control = 7.7%). The current study revealed that effects to NGF in lactating Holstein cows were minor and contingent with parity for progesterone, and no improvement in ISG relative abundance and P/AI were observed.  相似文献   

6.
A total of 799 Holstein cows from 3 herds were randomly assigned at 37 +/- 3 d in milk (DIM) to timed artificial insemination (AI) or insemination at detected estrus. Cows were presynchronized with injections of PGF(2alpha) at 37 and 51 DIM. At 65 DIM, cows received an injection of GnRH, followed 7 d later by PGF(2alpha). Cows in the estrus-detected group were inseminated after being observed in estrus during the 7 d after the last PGF(2alpha). Cows in the timed AI group received an injection of 1 mg of estradiol cypionate (ECP) 24 h after the last PGF(2alpha). If detected in estrus or=1 ng/mL; L = <1 ng/mL), resulting in 8 combinations (LLL, LHL, LLH, LHH, HHH, HHL, HLH, and HLL). Conception rates and pregnancy rates were higher for cows in the timed AI group than in the estrus-detected group at 30, 44, and 58 d (e.g., at 58 d, pregnancy rates were 42.2% for multiparous cows or 34.4% for primiparous cows in the group receiving ECP and timed AI compared with only 20.8 or 18.8% for respective parity subgroups for the treatment group inseminated only at detected estrus). Pregnancy losses were 11.5% from 30 to 58 d and did not differ between treatments. Cyclic cows within both treatments had higher estrous responses, conception rates, and pregnancy rates. Cows that responded to presynchronization and to luteolysis (HHL) had the highest conception and pregnancy rates, followed by cows classified as LHL. Use of 1 mg of ECP to induce ovulation as part of a synchrony regimen improved reproduction at first postpartum insemination in dairy cows.  相似文献   

7.
《Journal of dairy science》2022,105(10):8523-8534
The objectives of this retrospective observational study were to determine the associations of anogenital distance (AGD) with (a) postpartum estrous activity, (b) diameter of the preovulatory follicle, (c) intensity of estrous expression, (d) postestrus ovulation, (e) corpus luteum (CL) size, and (f) concentrations of progesterone at estrus and on d 7 after estrus. Lactating Holstein cows (n = 178; 55 primiparous, 123 multiparous) were enrolled into the study during the first postpartum week. All cows were continuously monitored by a pedometer-based automated activity monitoring (AAM) system for estrus. Postpartum estrous activity was assessed using the AAM estrus alerts, in which cows with at least one true estrus alert (i.e., a relative increase in steps from each cow's baseline detected by the AAM and the presence of at least one follicle >15 mm, a CL <20 mm, or no CL detected by ultrasound) by the first 50 d in milk (DIM) were considered to have commenced estrous activity. At the estrus alert >60 DIM, ovulation was determined by ultrasound at 24 h, 48 h, and 7 d after estrus, and blood samples were collected at estrus alert and on d 7 after estrus for progesterone analysis. The AGD was measured from the center of the anus to the base of the clitoris and classified as either short- or long-AGD using 2 cut-points of 148 mm (predictive of the probability of pregnancy to first insemination; short-AGD, n = 115; long-AGD, n = 63) and 142 mm (the median AGD; short-AGD, n = 90; long-AGD, n = 88). Regardless of the cut-point used, early postpartum estrous activity by 50 DIM (67 vs. 54%), duration of estrus (11.6 vs. 9.7 h), and preovulatory follicle diameter (20 vs. 19 mm) were greater in short-AGD than in long-AGD cows. Increased peak of activity at estrus in short-AGD cows (354 vs. 258% mean relative increase) was affected by an interaction between AGD and parity in which multiparous long-AGD cows had lesser relative increase in activity than primiparous cows (217 vs. 386%, respectively). Mean progesterone concentration at estrus was lesser in short-AGD (0.47 vs. 0.61 ng/mL) than in long-AGD cows. The ovulatory response at 24 h did not differ, but at 48 h (91 vs. 78%) and on d 7 after estrus (97 vs. 84%) it was greater in short-AGD cows. Although CL diameter on d 7 after estrus did not differ, short-AGD cows had greater progesterone concentration 7 d after estrus than long-AGD cows (4.1 vs. 3.2 ng/mL, respectively). In conclusion, greater proportions of short-AGD cows commenced estrous activity by 50 DIM, had larger preovulatory follicles, exhibited greater duration of estrus, had reduced progesterone concentration at estrus, had greater ovulation rates and progesterone concentration 7 d after estrus compared with long-AGD cows, with no difference in CL size between AGD groups. Because all the differences in physiological characteristics of short-AGD cows reported herein favor improved reproductive outcomes, we infer that these are factors contributing to improved fertility reported in short-AGD cows compared with long-AGD cows.  相似文献   

8.
Objectives were to evaluate the effects of inseminating cows observed in estrus following a PGF-based presynchronization protocol on reproductive and lactation performance. Weekly, Holstein cows (260 primiparous and 379 multiparous) were balanced by parity, body condition score at 3 d in milk (DIM), and previous lactation milk yield (multiparous cows) and assigned randomly to either of 2 reproductive programs. All cows received 2 injections of PGF at 35 and 49 DIM and a controlled internal drug release insert containing progesterone from 42 to 49 DIM. Cows assigned to the short voluntary waiting period (SVWP) treatment were inseminated if observed in estrus after the second injection of PGF of the presynchronization protocol, and those not inseminated were submitted to a timed artificial insemination (TAI) protocol (GnRH 62 DIM, PGF 69 DIM, GnRH 71 DIM, and TAI 72 DIM), whereas cows assigned to the long voluntary waiting period (LVWP) were all submitted to the TAI protocol and were TAI at 72 DIM. Plasma progesterone was determined at 35, 49, and 62 DIM for evaluation of interval from parturition to resumption of cyclicity. Pregnancy was diagnosed weekly at 32 and 60 d after first AI and at 42 d after subsequent inseminations. Percentage of SVWP cows inseminated in estrus was 58.9% and the interval from parturition to first AI was shorter for SVWP cows (64.7 ± 0.4 vs. 74.2 ± 0.5 DIM). Cows cyclic by 49 and 62 DIM were more likely to be inseminated in estrus than those anovular by 62 DIM (67.9, 61.0, and 32.8%, respectively) and cyclic cows by 49 and 62 DIM had shorter interval from parturition to first AI than anovular cows (62.6 ± 0.7, 63.1 ± 1.2, and 70.1 ± 1.1 DIM). Treatment did not affect pregnancy per AI after first postpartum AI or the rate at which cows became pregnant. Cows that resumed cyclicity by 49 DIM had greater pregnancy per AI than cows still anovular by 62 DIM and became pregnant at a faster rate than cows that resumed cyclicity by 62 DIM and those still anovular by 62 DIM. Inseminating cows that displayed estrus after the presynchronization protocol did not affect reproductive performance compared with submission of 100% of cows to a TAI protocol.  相似文献   

9.
The objectives were to (1) compare blood metabolites and reproductive outcomes in lactating dairy cows not inseminated before (early) and after (late) 100 d in milk (DIM) because of prolonged anovulation or anestrus; and (2) evaluate reproductive responses of cows ≤100 DIM to GnRH + PGF treatments after a fixed-time artificial insemination (AI; Ovsynch) or after induced estrus (Select Synch). In blood samples collected before initiating hormone-based breeding programs, anovular cows ≤100 DIM had the greatest serum total protein and globulin concentrations and the lowest tri-iodothyronine concentrations. Anovular and ovular cows >100 DIM had the greatest serum urea concentrations. Ovaries in cows (n = 40) >100 DIM were examined by transrectal ultrasonography, and those without a detectable corpus luteum (CL; anovular) were given GnRH and then PGF 7 d later (Select Synch), whereas cows with a CL (ovular) were given 2 PGF injections 12 d apart. Cows were inseminated at observed estrus after the second or only PGF injection. More ovular (79%; 15/19) than anovular cows (24%; 5/21) were detected in estrus. No differences were detected between ovular and anovular cows in DIM at first AI, conception rate to first AI, cumulative pregnancy rates, number of services per conception, or days open. Cows (n = 93) ≤100 DIM were assigned randomly to 3 treatments: (1) control (n = 20) AI at estrus; (2) GnRH and then PGF on 7 d (Select Synch; n = 42) and monitored for signs of estrus for 5 d and AI accordingly; or (3) 2 GnRH injections 9 d apart with PGF given 48 h before second GnRH injection and AI at 16 h after the second GnRH injection (Ovsynch; n = 31). Among cows ≤100 DIM, controls had more days to first service (149 ± 16 d) than Select Synch cows (117 ± 7 d). Ovsynch cows had the fewest days to first service (84 ± 10 d) compared with control (149 ± 16 d) and Select Synch (117 ± 7 d) cows. Conception rates in control (25%) and Select Synch (26.2%) cows did not differ from those in Ovsynch cows (29%). Ovsynch cows had greater cumulative pregnancy rates and fewer days open than control (161 ± 20 vs. 258 ± 29 d), but did not differ from Select Synch (233 ± 19 d). Timed AI produced comparable fertility and superior cumulative pregnancy rates, fewer days to first service, and fewer days open than AI at observed estrus in cows inseminated ≤100 DIM.  相似文献   

10.
A controlled field study examined conception rates after 2 timed artificial insemination (TAI) breeding protocols conducted on 2 commercial dairy farms. Estrous cycles in postpartum lactating cows were presynchronized with 2 injections of PGF(2alpha) given 14 d apart (Pre-synch) and then, after 12 d, the standard Ovsynch protocol (injection of GnRH 7 d before and 48 h after an injection of PGF(2alpha), with one TAI at 12 to 16 h after the second GnRH injection) or Heatsynch protocol [injection of GnRH 7 d before an injection of PGF(2alpha), followed 24 h later by 1 mg of estradiol cypionate (ECP) and one TAI 48 h after ECP] was applied. Experimental design allowed artificial insemination to occur anytime after the second Presynch injection and during the designed breeding week when estrus was detected. Of the 1846 first services performed, only 1503 (rate of compliance = 81.4%) were performed according to protocol. Numbers of cows inseminated, logistic-regression adjusted conception rates, and days in milk (DIM) were for inseminations made: 1) during 14 d after first Presynch injection (n = 145; 22.6%; 54 +/- 0.4 DIM); 2) during 12 d after second Presynch injection (n = 727; 33%; 59 +/- 0.2 DIM); 3) during 7 d after the first GnRH injection of Ovsynch or Heatsynch (n = 96; 32.1%; 74 +/- 0.5 DIM); 4) after estrus as part of Heatsynch (n = 212; 44.6%; 76 +/- 0.3 DIM); 4) after TAI as part of Heatsynch (n = 154; 21.1%; 76 +/- 0.4 DIM); 5) after estrus as part of Ovsynch (n = 43; 48.7%; 77 +/- 0.7 DIM); and 6) after TAI as part of Ovsynch (n = 271; 24.4%; 77 +/- 0.3 DIM). Conception rates when AI occurred after one Presynch injection were less than when AI occurred after 2 Presynch injections. Conception rates for those inseminated after either Presynch injection did not differ from those inseminated after combined Heatsynch + Ovsynch. Cows in the Ovsynch and Heatsynch protocols inseminated after estrus during the breeding week had greater conception rates than those receiving the TAI, but overall conception rates did not differ between protocols. Among cows inseminated after detected estrus, conception was greater for cows in the Heatsynch + Ovsynch protocol (77 +/- 0.4 DIM) than for those inseminated after either Presynch injection (54 +/- 0.4 or 59 +/- 0.2 DIM). We concluded that conception rates after Heatsynch and Ovsynch were similar under these experimental conditions, and that delaying first AI improved fertility for cows inseminated after detected estrus.  相似文献   

11.
Objectives were to determine the effect of reducing the period of follicle dominance in a timed artificial insemination (AI) protocol on pregnancy per AI (P/AI) in Holstein cows. In experiment 1, 165 cows received 2 injections of PGF at 36 and 50 d in milk (DIM). At 61 DIM, cows were assigned randomly to Cosynch 72 h (CoS72: d 61 GnRH, d 68 PGF, d 71 GnRH) or to a 5-d Cosynch 72 h with 1 (5dCoS1: d 61 GnRH, d 66 PGF, d 69 GnRH) or 2 injections of PGF (5dCoS2: d 61 GnRH, d 66 and 67 PGF, d 69 GnRH). Blood was sampled at the first GnRH, first PGF, and at the second GnRH of the protocols and assayed for progesterone. Ovulatory responses to GnRH were evaluated by ultrasonography. Cows were considered synchronized if they had concentrations of progesterone ≥1 ng/mL and <1 ng/mL on the days of the PGF, and the second GnRH of the protocols, respectively, and if they ovulated within 48 h of the second GnRH injection. In experiment 2, 933 cows were assigned randomly to CoS72 or 5dCoS2. Blood was assayed for progesterone and ovaries were scanned as in experiment 1. Plasma on the days of the first PGF and final GnRH of the timed AI protocols was assayed for estradiol in 75 cows. Pregnancy was diagnosed on d 38 and 66 after AI. In experiment 1, the proportions of cows with corpora lutea (CL) regression on the day of AI differed and were 79.0, 59.1, and 95.7% for CoS72, 5dCoS1, and 5dCoS2, respectively. Cows that ovulated to the first GnRH of the Cosynch tended to have lesser CL regression than cows that did not ovulate (73.0 vs. 86.4%). Protocol synchronization differed between treatments and they were greater for CoS72 (69.4%) and 5dCoS2 (78.4%) than for 5dCoS1 (42.3%). In experiment 2, CL regression was lesser (91.5 vs. 96.3%) but detection of estrus at timed AI (30.9 vs. 23.6%) was greater for CoS72 than 5dCoS2, and cows in estrus had increased P/AI (46.2 vs. 31.9%). Cows in CoS72 ovulated a larger follicle and had greater concentrations of estradiol on the day of AI than cows in 5dCoS2, but protocol synchronization tended to increase in cows receiving the 5dCoS2. When all 933 cows were evaluated, P/AI was greater for 5dCoS2 than for CoS72 (37.9 vs. 30.9%). Similarly, when only cows with progesterone <1 ng/mL on the day of AI were evaluated, P/AI was greater for 5dCoS2 than for CoS72 (39.3 vs. 33.9%). Treatment with PGF on d 5 and 6 after GnRH resulted in increased luteolysis and allowed for reducing the interval from GnRH to timed AI, which increased P/AI. Reducing time of follicle dominance in timed AI protocols improves fertility of lactating dairy cows.  相似文献   

12.
The objective of this study was to evaluate the factors that may affect conception rates (CR) following artificial insemination (AI) or embryo transfer (ET) in lactating Holstein cows. Estrous cycling cows producing 33.1 ± 7.2 kg of milk/d received PGF2α injections and were assigned randomly to 1 of 2 groups (AI or ET). Cows detected in estrus (n = 387) between 48 and 96 h after the PGF2α injection received AI (n = 227) 12 h after detection of estrus or ET (n = 160) 6 to 8 d later (1 fresh embryo, grade 1 or 2, produced from nonlactating cows). Pregnancy was diagnosed at 28 and 42 d after estrus, and embryonic loss occurred when a cow was pregnant on d 28 but not pregnant on d 42. Ovulation, conception, and embryonic loss were analyzed by a logistic model to evaluate the effects of covariates [days in milk (DIM), milk yield, body temperature (BT) at d 7 and 14 post-AI, and serum concentration of progesterone (P4) at d 7 and 14 post-AI] on the probability of success. The first analysis included all cows that were detected in estrus. The CR of AI and ET were different on d 28 (AI, 32.6% vs. ET, 49.4%) and 42 (AI, 29.1% vs. ET, 38.8%) and were negatively influenced by high BT (d 7) and DIM. The second analysis included only cows with a corpus luteum on d 7. Ovulation rate was 84.8% and was only negatively affected by DIM. Conception rates of AI and ET were different on d 28 (AI, 37.9% vs. ET, 59.4%) and 42 (AI, 33.8% vs. ET, 46.6%) and were negatively influenced by high BT (d 7). The third analysis included only ovulating cows that were 7 d postestrus. Conception rates of AI and ET were different on d 28 (AI, 37.5% vs. ET, 63.2%) and 42 (AI, 31.7% vs. ET, 51.7%) and were negatively influenced by high BT (d 7). There was a positive effect of serum concentration of P4 and a negative effect of milk production on the probability of conception for the AI group but not for the ET group. The fourth analysis was embryonic loss (AI, 10.8% vs. ET, 21.5%). The transfer of fresh embryos is an important tool to increase the probability of conception of lactating Holstein cows because it can bypass the negative effects of milk production and low P4 on the early embryo. The superiority of ET vs. AI is more evident in high-producing cows. High BT measured on d 7 had a negative effect on CR and embryonic retention.  相似文献   

13.
The objective of this experiment was to evaluate the reproductive performance and herd exit dynamics of dairy cows managed for first service with programs varying in method of submission for insemination and voluntary waiting period (VWP) duration. Holstein cows from a commercial farm in New York were randomly allocated to receive timed artificial insemination (TAI) after the Double-Ovsynch protocol (GnRH, 7 d later PGF, 3 d later GnRH, 7 d later GnRH, 7 d later PGF, 56 h later GnRH, and 16 to 18 h later TAI) at 60 ± 3 d in milk (DIM) (DO60 = 458), TAI after Double-Ovsynch at 88 ± 3 DIM (DO88 = 462), or a combination of AI at detected estrus (starting at 50 ± 3 d in milk) and TAI with the Presynch-Ovsynch protocol (PGF, 14 d later PGF, 12 d later GnRH, 7 d later PGF, 56 h later GnRH, and 16 to 18 h later TAI; PSOv = 450). Subsequent artificial insemination (AI) services were conducted at detected estrus or the Ovsynch protocol (32 ± 3 d after AI GnRH, 7 d later PGF, 56 h later GnRH, and 16 to 18 h later TAI) for cows not reinseminated at detected estrus. In a subgroup of cows, cyclicity (based on progesterone concentration), uterine health (vaginal discharge and uterine cytology), and BCS were evaluated at baseline (DO60 and DO88 = 33 ± 3 DIM; PSOv = 34 ± 3 DIM), beginning of the synchronization protocol (DO60 = 33 ± 3 DIM; DO88 = 61 ± 3 DIM; PSOv = 34 ± 3 DIM), and within ?5 (PSOv) or ?10 d (DO) of the VWP end (DO60 = 50 ± 3 DIM; DO88 = 78 ± 3 DIM; PSOv = 45 ± 3 DIM). Effects of treatments were assessed with multivariable statistical methods relevant for each outcome variable. Cows in the DO88 treatment had delayed time to pregnancy during lactation (DO60 vs. DO88 hazard ratio = 1.53, 95% confidence interval = 1.32 to 1.78; PSOv vs. DO88 hazard ratio = 1.37, 95% confidence interval = 1.19 to 1.61) and, within multiparous cows, the DO88 and PSOv treatments had greater risk of leaving the herd than cows in the DO60 treatment (DO88 vs. DO60 hazard ratio = 1.49, 95% confidence interval = 1.11 to 2.00; PSOv vs. DO60 hazard ratio = 1.39, 95% confidence interval = 1.03 to 1.85). Cows in the DO88 treatment had improved uterine health, greater BCS, and reduced incidence of anovulation than cows in DO60 and PSOv; however, overall pregnancy per AI 39 ± 3 d after AI was similar for the 3 treatment groups. In summary, reproductive management strategies that led to similar average DIM to the first service (~60 d) through a combination of AI at estrus with TAI (PSOv) or all TAI (DO60) resulted in reduced time to pregnancy after calving when compared with an all TAI program (DO88) with a VWP of 88 d. Within the multiparous cow group, those that received all TAI with a VWP duration of 60 d were less likely to leave the herd than cows in the other treatments.  相似文献   

14.
Objectives were to investigate 2 intervals from induction of ovulation to artificial insemination (AI) and the effect of supplemental progesterone for resynchronization on fertility of lactating dairy cows subjected to a 5-d timed AI program. In experiment 1, 1,227 Holstein cows had their estrous cycles presynchronized with 2 injections of PGF at 46 and 60 d in milk (DIM). The timed AI protocols were initiated with GnRH at 72 DIM, followed by 2 injections of PGF at 77 and 78 DIM and a second injection of GnRH at either 56 (OVS56) or 72 h (COS72) after the first PGF of the timed AI protocols. All cows were time-inseminated at 72 h after the first PGF injection. Pregnancy was diagnosed on d 32 and 60 after AI. In experiment 2, 675 nonpregnant Holstein cows had their estrous cycles resynchronized starting at 34 d after the first AI. Cows received the OVS56 with (RCIDR) or without (RCON) supplemental progesterone, as an intravaginal insert, from the first GnRH to the first PGF. Pregnancy diagnoses were performed on d 32 and 60 after AI. During experiment 2, subsets of cows had their ovaries scanned by ultrasonography at the first GnRH, the first PGF, and second GnRH injections of the protocol. Blood was sampled on the day of AI and 7 d later, and concentrations of progesterone were determined in plasma. Cows were considered to have a synchronized ovulation if they had progesterone <1 and >2.26 ng/mL on the day of AI and 7 d later, respectively, and if no ovulation was detected between the first PGF and second GnRH injections during resynchronization. In experiment 1, the proportion of cows detected in estrus at AI was greater for COS72 than OVS56 (40.6 vs. 32.4%). Pregnancy per AI (P/AI) did not differ between OVS56 (46.4%) and COS72 (45.5%). In experiment 2, cows supplemented with progesterone had greater P/AI compared with unsupplemented cows (51.3 vs. 43.1%). Premature ovulation tended to be greater for RCON than RCIDR cows (7.5 vs. 3.6%), although synchronization of the estrous cycle after timed AI was similar between treatments. Timing of induction of ovulation with GnRH relative to insemination did not affect P/AI of dairy cows enrolled in a 5-d timed AI program. Furthermore, during resynchronization starting on d 34 after the first AI, supplementation with progesterone improved P/AI in cows subjected to the 5-d timed AI protocol.  相似文献   

15.
《Journal of dairy science》2022,105(10):8411-8425
The primary objective of this randomized controlled experiment was to evaluate the insemination dynamic and reproductive performance of cows managed with a targeted reproductive management (TRM) program designed to prioritize artificial insemination (AI) at detected estrus (AIE) and optimize timing of AI by grouping cows based on detection of estrus during the voluntary waiting period (VWP). Our secondary objective was to evaluate reproductive outcomes for cows with or without estrus during the VWP. Lactating Holstein cows fitted with an ear-attached sensor for detection of estrus were randomly assigned to a TRM treatment that prioritized AIE based on detection of estrus during the VWP (TP-AIE; n = 488), a non-TRM treatment that prioritized AIE (P-AIE; n = 489), or an all timed AI (TAI) treatment with extended VWP (ALL-TAI; n = 491). In TP-AIE, cows with or without automated estrus alerts (AEA) recorded during the VWP received AIE if detected in estrus for at least 31 ± 3 or 17 ± 3 d after a 49 d VWP, respectively. Cows not AIE with or without AEA during the VWP received TAI after Ovsynch with progesterone supplementation and 2 PGF treatments (P4-Ov) at 90 ± 3 or 74 ± 3 d in milk (DIM), respectively. In P-AIE, cows received AIE if detected in estrus for 24 ± 3 d after a 49 d VWP, and if not AIE received TAI at 83 ± 3 DIM after P4-Ov. In ALL-TAI, cows received TAI at 83 ± 3 DIM after a Double-Ovsynch protocol. Data were analyzed by logistic and Cox's proportional hazard regression. The proportion of cows AIE did not differ for TP-AIE (71.0%) and P-AIE (74.6%). Overall P/AI at 39 d after first service was greater for the ALL-TAI (47.6%) than for the P-AIE (40.2%) and TP-AIE (39.5%) treatments. The hazard of pregnancy up to 150 DIM was greater for cows in TP-AIE (hazard ratio = 1.2; 95% confidence interval: 1.1–1.4) and P-AIE (hazard ratio = 1.2; 95% confidence interval: 1.1–1.4) than for cows in the ALL-TAI treatment which resulted in median time to pregnancy of 89, 89, and 107 d. Conversely, the proportion of cows pregnant at 150 DIM did not differ (ALL-TAI 78.5%, P-AIE 76.3%, TP-AIE 76.0%). Except for a few outcomes for which no difference was observed, cows detected in estrus during the VWP had better performance than cows not detected in estrus. Cows with AEA during the VWP were more likely to receive AIE, had greater P/AI, and greater pregnancy rate up to 150 DIM regardless of first service management. We conclude that a TRM program designed to prioritize AIE by grouping cows based on detection of estrus during the VWP was an effective strategy to submit cows for first service resulting in similar or improved performance than a non-TRM program that prioritized AIE or an all-TAI program with extended VWP. Also, AEA recorded during the VWP might be used as a strategy for identifying subgroups of cows with different reproductive performance.  相似文献   

16.
Pregnancy per artificial insemination (P/AI) following Ovsynch is optimized when cows ovulate to the first GnRH of Ovsynch. Fertility programs are designed to presynchronize cows to d 6 or 7 of the estrous cycle to increase the chances of ovulation of a first-wave dominant follicle to the first GnRH of Ovsynch. The hypothesis of this experiment was that simplification of a presynchronization program through the combination of PGF and GnRH on the same day, 7 d before Ovsynch, would allow for similar P/AI compared with Presynch-10. Lactating dairy cows (n = 432) 41 to 47 d in milk (DIM) were randomly assigned to 2 treatments within parities for first service. Control cows received Presynch-10/Ovsynch consisting of the following: PGF–14 d–PGF–10 d–GnRH–7 d–PGF–56 h–GnRH–16 h–AI. Treated cows received PGF and GnRH–7 d–GnRH–7 d–PGF–56 h–GnRH–16 h–AI. All cows received a supplemental injection of PGF 24 h after the PGF of Ovsynch to enhance complete luteolysis. All cows received timed AI between 75 and 81 DIM. Blood was collected to assess circulating concentrations of progesterone (P4), and the number and size of corpora lutea (CL) were recorded using ultrasonography on day of PGF of Ovsynch. The administration of PGF simultaneously with GnRH and 7 d before Ovsynch (PG+G) had similar P/AI at 28 (46 vs. 48%), 35 (43 vs. 43%), 49 (39 vs. 39%), and 77 d post-AI (38 vs. 39%) compared with Presynch-10. No differences were observed in P/AI in primiparous versus multiparous cows at 28 (52 vs. 45%), 35 (48 vs. 41%), 49 (45 vs. 37%), and 77 d post-AI (43 vs. 36%). No difference existed between treatments in percentage of cows with functional CL at PGF of Ovsynch, total luteal area (mm2), or serum concentrations of P4 at time of PGF of Ovsynch, regardless of parity. Number of CL had a tendency to be greater for multiparous PG+G vs. Presynch-10 cows (2.34 ± 0.09 vs. 2.15 ± 0.08) but not in primiparous cows (1.95 ± 0.10 vs. 1.98 ± 0.11). In summary, administering both PGF and GnRH on the same day, 7 d before the start of Ovsynch, appears to be a simple and effective alternative to Presynch-10 Ovsynch.  相似文献   

17.
Using a 5-d controlled internal drug-release (CIDR)-Cosynch resynchronization protocol, the objective of this study was to determine the effect of the initial GnRH injection on pregnancy per artificial insemination (P/AI) to the second artificial insemination in lactating Holstein dairy cows. On 37 ± 3 d (mean ± standard deviation) after the first artificial insemination, and upon nonpregnancy diagnosis (d 0 of the experiment), lactating cows eligible for a second artificial insemination (n = 429) were enrolled in a 5-d CIDR-Cosynch protocol. On d 0, all cows received a CIDR insert and were assigned randomly to receive the initial GnRH injection (GnRH; n = 226) of the protocol or no-GnRH (n = 203). Blood samples were collected from a sub-group of cows (n = 184) on d 0 and analyzed for progesterone (P4) concentration. On d 5, CIDR inserts were removed, and all cows received 1 injection of PGF. On d 6 and 7, cows were observed once daily by employees for tail-chalk removal, and cows detected in estrus on d 6 or 7 received artificial insemination that day (EDAI), and did not receive the final GnRH injection. The remaining cows not detected in estrus by d 8 received GnRH and timed artificial insemination (TAI). Pregnancy status was confirmed by transrectal palpation of uterine contents at 37 ± 3 d (mean ± standard deviation) after the second artificial insemination. Eliminating the initial GnRH injection had no effect on P/AI compared with cows receiving GnRH (27 vs. 21%), respectively. Similarly, method of insemination (EDAI vs. TAI) and its interaction with treatment had no effect on P/AI. Primiparous cows had greater P/AI than multiparous cows (31 vs. 21%). Mean P4 concentrations (n = 184) at the initiation of the protocol did not differ between treatments (4.51 ± 0.35 ng/mL no-GnRH vs. 3.96 ± 0.34 ng/mL of GnRH). When P4 concentrations were categorized as high (≥1 ng/mL) or low (<1 ng/mL), P/AI tended to be greater for high P4 concentrations (n = 136) compared with low (n = 48) P4 concentrations (26 vs. 16%, respectively). No differences were observed in the proportion of cows with high or low P4 between treatments. Collectively, these results provide evidence that eliminating the initial GnRH in a 5-d CIDR-Cosynch resynchronization protocol for lactating dairy cows did not reduce P/AI in this study.  相似文献   

18.
The objective was to determine the influence of gonadotropin-releasing hormone on pregnancy rates of dairy cattle at first services, when both the timing of hormone injection and insemination were altered relative to the onset of estrus. Cows (n = 325) were assigned randomly to six groups making up a 2 X 2 X 2 incomplete factorial experiment; dose of GnRH (100 micrograms versus saline), timing [1 h (early) or 12 to 16 h (late) after first detected estrus] of AI, and timing of hormone injection (early versus late) were the three main effects. Cows were observed for estrus 4 times daily. Treatments and resulting pregnancy rates were: 1) hormone injection early plus AI early (35%), 2) hormone injection late plus AI early (34%), 3) saline injection early plus AI early (30%), 4) hormone injection late plus AI late (30%), 5) hormone injection early plus AI late (46%), and 6) saline injection late plus AI late (43%). Pregnancy rate in the first four groups (32%) was less than that in the latter two groups (44%). Concentrations of LH in serum were greater for cows given hormone or saline injections in early estrus than for cows injected with either hormone of saline during late estrus. Concentrations of LH in serum 2 h after GnRH were elevated above those of controls, whether GnRH was injected during early or late estrus. Neither concentrations of LH during estrus nor concentrations of progesterone 8 to 14 d after estrus explained the possible antifertility effect of GnRH given during late estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Two experiments evaluated the effects of the first GnRH injection of the 5-d timed artificial insemination (AI) program on ovarian responses and pregnancy per AI (P/AI), and the effect of timing of the final GnRH to induce ovulation relative to AI on P/AI. In experiment 1, 605 Holstein heifers were synchronized for their second insemination and assigned randomly to receive GnRH on study d 0 (n = 298) or to remain as untreated controls (n = 307). Ovaries were scanned on study d 0 and 5. All heifers received a controlled internal drug-release (CIDR) insert containing progesterone on d 0, a single injection of PGF and removal of the CIDR on d 5, and GnRH concurrent with timed AI on d 8. Blood was analyzed for progesterone at AI. Pregnancy was diagnosed on d 32 and 60 after AI. Ovulation on study d 0 was greater for GnRH than control (35.4 vs. 10.6%). Presence of a new corpus luteum (CL) at PGF injection was greater for GnRH than for control (43.1 vs. 20.8%), although the proportion of heifers with a CL at PGF did not differ between treatments and averaged 87.1%. Progesterone on the day of AI was greater for GnRH than control (0.50 ± 0.07 vs. 0.28 ± 0.07 ng/mL). The proportion of heifers at AI with progesterone <0.5 ng/mL was less for GnRH than for control (73.8 vs. 88.2%). The proportion of heifers in estrus at AI did not differ between treatments and averaged 66.8%. Pregnancy per AI was not affected by treatment at d 32 or 60 (GnRH = 52.5 and 49.8% vs. control = 54.1 and 50.0%), and pregnancy loss averaged 6.0%. Responses to GnRH were not influenced by ovarian status on study d 0. In experiment 2, 1,295 heifers were synchronized for their first insemination and assigned randomly to receive a CIDR on d 0, PGF and removal of the CIDR on d 5, and either GnRH 56 h after PGF and AI 16 h later (OVS56, n = 644) or GnRH concurrent with AI 72 h after PGF (COS72; n = 651). Estrus at AI was greater for COS72 than for OVS56 (61.4 vs. 47.5). Treatment did not affect P/AI on d 32 in heifers displaying signs of estrus at AI, but COS72 improved P/AI compared with OVS56 (55.0 vs. 47.6%) in those not in estrus at AI. Similarly, P/AI on d 60 did not differ between treatments for heifers displaying estrus, but CO S72 improved P/AI compared with OVS56 (53.0 vs. 44.7%) in those not in estrus at AI. Administration of GnRH on the first day of the 5-d timed AI program resulted in low ovulation rate and no improvement in P/AI when heifers received a single PGF injection 5 d later. Moreover, extending the proestrus by delaying the final GnRH from 56 to 72 h concurrent with AI benefited fertility of dairy heifers that did not display signs of estrus at insemination following the 5-d timed AI protocol.  相似文献   

20.
The objectives of this study were to assess the responses to treatments (clinical cure and cow survival 14 d posttherapy) of cows with clinical endometritis (CE) that received intrauterine infusion of a hypertonic solution of 50% dextrose (DEX) or subcutaneous ceftiofur crystalline free acid (CCFA) and subsequent pregnancy per artificial insemination (P/AI) in cows with CE compared with cows without CE. Cows (n=760) from 2 dairy herds were screened for CE using vaginoscopy and measurement of cervix diameters [exam 1; 26±3 d in milk (DIM)]. Cows with vaginal discharge scores of 2 or 3 (scale 0-3) were stratified by parity and randomly allocated into 1 of 3 treatment groups: (1) intrauterine infusion (~200 mL) of 50% DEX solution (n=79); (2) 6.6 mg/kg single-dose of subcutaneous administration of CCFA (n=75); or (3) untreated control animals (CON, n=83). Fourteen days posttherapy (at 40±3 DIM), cows with CE were re-examined (exam 2; 40±3 DIM) to assess the response to treatments. All cows were presynchronized with 2 injections of PGF(2α) given 14 d apart (starting at 26±3 DIM) followed by Ovsynch (OV; GnRH-7 d-PGF-56 h-GnRH 16 h-timed-AI) 12 to 14 d later. Cows displaying signs of standing estrus any time during the protocol were inseminated, whereas the remaining cows were subjected to timed AI 16 h after the second GnRH of OV. Pregnancy diagnosis was performed via transrectal ultrasonography at 39±3d post-AI followed by pregnancy reconfirmation 30 d after the first pregnancy diagnosis. Uterine swabs revealed that Arcanobacterium pyogenes and Escherichia coli were the most predominant bacteria isolated at the time of treatments. Mortality within 14 d posttherapy was not different among treatment groups. Cows with CE had greater cervical diameter at exam 1 and decreased P/AI compared with cows without CE. Treatment with CCFA or DEX increased the proportion of cows with clear vaginal discharge (score 0; clinical cure) 14 d posttherapy compared with CON cows. Pregnancy per AI from DEX (29.8±4%) cows tended to differ from that of CON (21.1±4%) or CCFA cows (19.7±4%), but it resulted in similar P/AI as those cows without CE (39.1±2%). The use of intrauterine DEX alone or as an adjunct of antibiotic therapy for the treatment of CE needs further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号