首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Reduced potential milk yield is an important component of mastitis costs in dairy cows. The first aim of this study was to assess associations between somatic cell count (SCC) during the first lactation, and cumulative milk yield over the first lactation and subsequent lifetime of cows in Irish dairy herds. The second aim was to assess the association between SCC at 5 to 30 d in milk during parity 1 (SCC1), and SCC over the entire first lactation for cows in Irish dairy herds. The data set studied included records from 51,483 cows in 5,900 herds. Somatic cell count throughout the first lactation was summarized using the geometric mean and variance of SCC. Data were analyzed using linear models that included random effects to account for the lack of independence between observations, and herd-level variation in coefficients. Models were developed in a Bayesian framework and parameters were estimated from 10,000 Markov chain Monte Carlo simulations. The final models were a good fit to the data. A 1-unit increase in mean natural logarithm SCC over the first lactation was associated with a median decrease in first lactation and lifetime milk yield of 135 and 1,663 kg, respectively. A 1-unit increase in the variance of natural logarithm SCC over the first lactation was associated with a median decrease in lifetime milk yield of 719 kg. To demonstrate the context of lifetime milk yield results, microsimulation was used to model the trajectory of individual cows and evaluate the expected outcomes for particular changes in herd-level geometric mean SCC over the first lactation. A 75% certainty of savings of at least €199/heifer in the herd was detected if herd-level geometric mean SCC over the first lactation was reduced from ≥120,000 to ≤72,000 cells/mL. The association between SCC1 and SCC over the remainder of the first lactation was highly herd dependent, indicating that control measures for heifer mastitis should be preferentially targeted on an individual-herd basis toward either the pre- and peripartum period, or the lactating period, to optimize the lifetime milk yield of dairy cows.  相似文献   

2.
The association between somatic cell count (SCC) and daily milk yield in different stages of lactation was investigated in cows free of clinical mastitis (CM). Data were recorded between 1989 and 2004 in a research herd, and consisted of weekly test-day (TD) records from 1,155 lactations of Swedish Holstein and Swedish Red cows. The main data set (data set A) containing 36,117 records excluded TD affected by CM. In this data set, the geometric mean SCC was 55,000 and 95,000 cells/mL in primiparous and multiparous cows, respectively. A subset of data set A (data set B), containing 27,753 records excluding all TD sampled in lactations affected by CM, was created to investigate the effect of subclinical mastitis (SCM) in lactations free of CM. Daily milk yields were analyzed using a mixed linear model with lactation stage; linear, quadratic and cubic regressions of log2-transformed and centered SCC nested within lactation stage; weeks in lactation; TD season; parity; breed; pregnancy status; year-season of calving; calving, reproductive, metabolic and claw disorders; and housing system as fixed effects. A random regression was included to further improve the modeling of the lactation curve. Primiparous and multiparous cows were analyzed separately. The magnitude of daily milk loss associated with increased SCC depended on stage of lactation and parity, and was most extensive in late lactation irrespective of parity. In data set A, daily milk loss at an SCC of 500,000 cells/mL ranged from 0.7 to 2.0 kg (3 to 9%) in primiparous cows, depending on stage of lactation. In multiparous cows, corresponding loss was 1.1 to 3.7 kg (4 to 18%). Regression coefficients of primiparous cows estimated from data set B were consistent with those obtained from data set A, whereas data set B generated more negative regression coefficients of multiparous cows suggesting a higher milk loss associated with increased SCC in lactations in which the cow did not develop CM. The 305-d milk loss in the average lactation affected with SCM was 155 kg of milk (2%) in primiparous cows and 445 kg of milk (5%) in multiparous cows. It was concluded that multiparous cows in late lactation can be expected to be responsible for the majority of the herd-level production loss caused by SCM, and that preventive measures need to focus on reducing the incidence of SCM in such cows.  相似文献   

3.
The aim of this study was to investigate the associations between differential somatic cell count (DSCC) and milk quality and udder health traits, and for the first time, between DSCC and milk coagulation properties and cheesemaking traits in a population of 1,264 Holstein cows reared in northern Italy. Differential somatic cell count represents the combined proportions of polymorphonuclear neutrophils plus lymphocytes (PMN-LYM) in the total somatic cell count (SCC), with macrophages (MAC) making up the remaining proportion. The milk traits investigated in this study were milk yield (MY), 8 traits related to milk composition and quality (fat, protein, casein, casein index, lactose, urea, pH, and milk conductivity), 9 milk coagulation traits [3 milk coagulation properties (MCP) and 6 curd firming (CF) traits], 7 cheesemaking traits, 3 cheese yield (CY) traits, and 4 milk nutrient recovery in the curd (REC) traits. A linear mixed model was fitted to explore the associations between SCS combined with DSCC and the aforementioned milk traits. An additional model was run, which included DSCC expressed as the PMN-LYM and MAC counts, obtained by multiplying the percentage of PMN-LYM and MAC by SCC in the milk for each cow in the data set. The unfavorable association between SCS and milk quality and technological traits was confirmed. Increased DSCC was instead associated with a linear increase in MY, casein index, and lactose proportion and a linear decrease in milk fat and milk conductivity. Accordingly, DSCC was favorably associated with all MCP and CF traits (with the exception of the time needed to achieve maximum, CF), particularly with rennet coagulation time, and it always displayed linear relationships. Differential somatic cell count was also positively associated with the recovery of milk nutrients in the curd (protein, fat, and energy), which increased linearly with increasing DSCC. The PMN-LYM count was rarely associated with milk traits, even though the pattern observed confirmed the results obtained when both SCS and DSCC were included in the model. The MAC count, however, showed the opposite pattern: MY, casein index, and lactose percentage decreased and milk conductivity increased with an increasing MAC count. No significant association was found between PMN-LYM count and MCP, CF, CY, and REC traits, whereas MAC count was unfavorably associated with MCP, CF traits, some CY traits, and all REC traits. Our results showed that the combined information derived from SCS and DSCC might be useful to monitor milk quality and cheesemaking-related traits.  相似文献   

4.
This research investigated the effect of lameness, measured by locomotion score (LS) on the somatic cell count (SCC) of UK dairy cows. The data set consisted of 11,141 records of SCC and LS collected monthly on 12 occasions from 1,397 cows kept on 7 farms. The data were analyzed to account for the correlation of repeated measures of SCC within cow. Results were controlled for farm of origin, stage of lactation, parity, season, and test-day milk yield. Compared with the geometric mean SCC for cows with LS 1 on each farm, cows on farm 3 with LS 2 produced milk with 28,000 fewer somatic cells/mL, and cows with LS 2 on farm 6 produced milk with 30,000 fewer somatic cells/mL at a test day within 10 d. Cows that would have LS 3 six months later produced milk with 16,000 fewer somatic cells/mL compared with the geometric mean SCC for cows that would have LS 1 in 6 mo time. These results illustrate differences in disease dynamics between farms, highlight potential conflict between lameness and mastitis control measures, and emphasize the importance of developing farm-specific estimates of disease costs, and hence, health management plans in clinical practice.  相似文献   

5.
A total of 9592 samples of half udder milk were collected monthly throughout lactation for bacteriological and somatic cell count (SCC) study from 1322 Churra ewe lactations from seven separate flocks enrolled in the recording scheme of the National Association of Spanish Churra Breeders in the Castile-Le6n region of Spain. Statistical analyses were carried out from a mixed model with random factor half udder or ewe for repeated measures. Test of significance of fixed effects of this mixed model showed significant effects of organisms, flock, parity, lactation stage, and birth type on SCC. Special reference must be made to novobiocin-sensitive coagulase-negative staphylococci, which represented more than 50% of the isolates and which elicited SCC geometric means of around 106/ml. In addition, the analysis of 4352 monthly test-day records for milk yield, SCC, and bacteriology showed that the ewes that were uninfected and infected by minor pathogens had the lowest SCC and the highest milk yields, whereas those infected by major pathogens had high SCC and milk yield losses between 8.8 and 10.1% according to the uni- or bilateral character of the infection. Finally, ewes infected by novobiocin-sensitive coagulase-negative staphylococci elicited SCC values similar to those of infections by major pathogens and milk yield losses ranging between those caused by minor and major pathogens. As a result, emphasis should be put on prevention of subclinical mastitis, particularly mastitis caused by novobiocin-sensitive coagulase-negative staphylococci in dairy sheep herds to improve microbiological and hygienic milk quality and to minimize losses in milk yield.  相似文献   

6.
Lactoperoxidase (LPO) is a milk protein with antimicrobial function. The present study was undertaken to examine the correlation between LPO activity and somatic cell count (SCC) in milk to use LPO activity as an indicator of mastitis. Composite milk of 36 cows and quarter milk of 3 cows were collected once per week from 0 to 300 d postpartum and twice per day for 1 wk, respectively. For the measurement of LPO activity, milk was mixed with tetramethylbenzidine solution and incubated at 37°C for 30 min, followed by the measurement of optical density. When only milk with low SCC (132 ± 12 × 103 cells/mL) was used, a significant decrease in LPO activity was detected in primiparous cows from 0 to 4 mo postpartum. Lactoperoxidase activities of primiparous cows in mo 1, 2, and 3 postpartum were significantly higher than those in multiparous cows. When composite milk was divided based on LPO activity, the SCC was significantly higher in the groups with LPO activity >5 and from 3 to 3.9 U/mL in the second- and fourth-parity cows, respectively, compared with the group with LPO activity <2 U/mL. Extremely high SCC were found in the ≥fifth-parity cows, even in low-LPO activity groups. In the case of quarter milk, higher LPO activity was associated with increased SCC in all 3 cows. The percentage of quarter milk samples with high SCC (4,062 ± 415 × 103 cells/mL) increased with an increase in the LPO activity. The percentage of quarter milk samples with high SCC was 50.0 to 100% in the milk with LPO activity ≥5 U/mL. These results indicate that the correlation of LPO activity to the SCC in bovine milk may point to the potential use of the former as an indicator of SCC.  相似文献   

7.
《Journal of dairy science》2023,106(7):4991-5001
The use of selective dry cow antimicrobial therapy requires precisely differentiating cows with an intramammary infection (IMI) from uninfected cows close to drying-off to enable treatment allocation. Milk somatic cell count (SCC) is an indicator of an inflammatory response in the mammary gland and is usually associated with IMI. However, SCC can also be influenced by cow-level variables such as milk yield, lactation number, and stage of lactation. In recent years, predictive algorithms have been developed to differentiate cows with IMI from cows without IMI based on SCC data. The objective of this observational study was to explore the association between SCC and subclinical IMI, taking cognizance of cow-level predictors on Irish seasonal spring calving, pasture-based systems. Additionally, the optimal test-day SCC cut-point (maximized sensitivity and specificity) for IMI diagnosis was determined. A total of 2,074 cows across 21 spring calving dairy herds with an average monthly milk weighted bulk tank SCC of ≤200,000 cells/mL were enrolled in the study. Quarter-level milk sampling was carried out on all cows in late lactation (interquartile range = 240–261 d in milk) for bacteriological culturing. Bacteriological results were used to define cows with IMI when ≥1 quarter sample resulted in bacterial growth. Cow-level test-day SCC records were provided by the herd owners. The ability of the average, maximum, and last test-day SCC to predict infection were compared using receiver operator curves. Predictive logistic regression models tested included parity (primiparous or multiparous), yield at last test-day, and a standardized count of high SCC test-days. In total, 18.7% of cows were classified as having an IMI, with first-parity cows having a higher proportion of IMI (29.3%) compared with multiparous cows (16.1%). Staphylococcus aureus accounted for the majority of these infections. The last test-day SCC was the best predictor of infection with the highest area under the curve. The inclusions of parity, yield at last test-day, and a standardized count of high SCC test-days as predictors did not significantly improve the ability of last test-day SCC to predict IMI. The cut-point for last test-day SCC that maximized sensitivity and specificity was 64,975 cells/mL. This study indicates that in Irish seasonal pasture-based dairy herds with low bulk tank SCC, the last test-day SCC (interquartile range days in milk = 221–240) is the best predictor of IMI in late lactation.  相似文献   

8.
The aim was to evaluate the effects of mastitis, determined by the pattern and level of somatic cell count (SCC) around first artificial insemination (AI), on conception rate (CR). Data from 287,192 first AI and milk records covering a 7-yr period were obtained from the Israeli Herd Book. Analyses examined the association of probability of conception with SCC elevation relative to timing of AI, using generalized linear mixed models. A SCC threshold of 150,000 cells/mL of milk was set to distinguish between uninfected cows and cows with mastitis. Accordingly, cows with high SCC before and low SCC after AI were designated cured, those with low SCC before and high SCC after AI were designated newly infected, and cows with high SCC before and after AI were designated chronic (likely subclinical) mastitic cows. Compared with uninfected cows, the cured, newly infected, and chronic subgroups showed reduced CR (39.4 ± 0.1, 36.6 ± 0.2, 32.9 ± 0.3, and 31.5 ± 0.2, respectively). In the chronic, subclinical group, probability of conception was lowered by 14.5% in the mild and moderately elevated SCC subgroups and by 20.5% in cows with high SCC elevation compared with the uninfected group (CR of 29.7 vs. 39.4%, respectively). A single high elevation of SCC (>106 cells/mL on only 1 milk test day) lowered the probability of conception by 23.6% when it occurred during the 10 d immediately before AI, but not when it occurred earlier. For 30 d after AI, probability of conception was lowered by about 23%, as reflected in a CR of about 27% compared with the uninfected group. Probability of conception was lowered in cows with uterine and foot health problems (33.9%), in multiparous cows (34.1%), and in cows in the summer (29.1%), but no interactions with mastitis were detected. Results indicate that SCC elevation around AI, typical for subclinical mastitis, was associated with a significant reduction in probability of conception, and that even mild SCC elevation reduced CR. Severe elevation of SCC before AI, typical for clinical intramammary infection, reduced the probability of conception.  相似文献   

9.
Despite the fact that control programs have been available for several decades, mastitis remains an important problem in dairy herds around the world. Possible reasons for this include poor uptake and application of recommended mastitis control measures; poor or variable compliance; or variability in the effects of these measures. The objective of this study was to evaluate the associations between implemented mastitis control measures and bulk milk somatic cell count (BMSCC) in Swedish dairy herds. Data for this study were collected primarily from an extensive self-administered postal questionnaire about the herds, the people responsible for udder health, and details of udder health and mastitis management. A total of 898 questionnaires were distributed, and 428 questionnaires were returned (overall response rate of 48%), but we used the information from only 395 herds in this study. For all herds, we collected data on herd size and geometric average calculated BMSCC from the Swedish Official Milk Recording Scheme. We used logistic regression to assess the association between mastitis control measures and BMSCC, dichotomized as low (<200,000 cells/mL) or high (>200,000 cells/mL). We investigated 21 measures that have been suggested for mastitis control, but found only 2 to be associated with udder health as measured by BMSCC. Not providing dry cows with a specialized mineral feed was significantly associated with increased risk of high BMSCC, and not using post-milking teat disinfectant tended to be associated with increased risk. The lack of association for all other measures was not likely due to low power (because most of these measures had variable implementation rates) but could be due to the relatively narrow range of BMSCC in our study (range 61,000–524,000 cells/mL). However, our results agreed well with those of other recent studies, supporting the call for a thorough review of the current knowledge of mastitis control and for wider application of intervention studies to verify the actual effects of suggested control measures.  相似文献   

10.
A total of 13,066 first-lactation test-day records of 2,277 Valle del Belice ewes from 17 flocks were used to estimate genetic parameters for somatic cell scores (SCS) and milk production traits, using a repeatability test-day animal model. Heritability estimates were low and ranged from 0.09 to 0.14 for milk, fat, and protein yields, and contents. For SCS, the heritability of 0.14 was relatively high. The repeatabilities were moderate and ranged from 0.29 to 0.47 for milk production traits. The repeatability for SCS was 0.36. Flock-test-day explained a large proportion of the variation for milk production traits, but it did not have a big effect on SCS. The genetic correlations of fat and protein yields with fat and protein percentages were positive and high, indicating a strong association between these traits. The genetic correlations of milk production traits with SCS were positive and ranged from 0.16 to 0.31. The results showed that SCS is a heritable trait in Valle del Belice sheep and that single-trait selection for increased milk production will also increase SCS.  相似文献   

11.
The objective was to evaluate the relationship of somatic cell count (SCC; cells/mL) with milk yield, energy-corrected milk yield (ECM; kg/d), dry matter intake (DMI; kg/d), feed efficiency for milk (FEMY; kg of milk/kg of DMI), and feed efficiency for ECM (FEECM; kg of ECM/kg of DMI) in lactating dairy cows. We analyzed an SCC database consisting of 7 experiments, which were conducted at The Pennsylvania State University's Dairy Teaching and Research Center between 2009 and 2015. The experiments included in the SCC database were randomized block designs and investigated dietary effects on cow performance over 6 to 11 wk. Each experiment took repeated measurements of SCC, milk yield, milk composition, and DMI. After exclusion of records from cows without lactation number, days in milk, and only 1 measurement, the database comprised 1,094 observations of 254 cows for estimating the effect of SCC on milk yield, DMI, and FEMY and 1,079 observations of 250 cows for estimating the effect of SCC on ECM and FEECM. Data were analyzed in R using a linear mixed model with natural logarithm of SCC, lactation number (1, 2, and ≥3), days in milk, and the interactions of the linear predictors as fixed effects and cow within block and experiment as random effect. Natural logarithm of SCC was negatively correlated with milk yield, ECM, DMI, FEMY, and FEECM. Our results suggest that a cow with relatively high SCC (250,000 cells/mL) compared with a cow with a relatively low SCC (50,000 cells/mL) produces, on average, 1.6 kg/d less milk, consumes 0.3 kg/d less DMI, produces 0.04 kg less milk per kg of DMI, and produces 0.03 less ECM per kg of DMI. The observed decrease of feed efficiency with increased SCC adds to previously known economic losses and environmental impacts associated with mastitis, which should provide a further incentive to control mastitis in dairy cows.  相似文献   

12.
The objective of this study was to determine if a correlation exists between standard plate count (SPC) and somatic cell count (SCC) monthly reported results for Wisconsin dairy producers. Such a correlation may indicate that Wisconsin producers effectively controlling sanitation and milk temperature (reflected in low SPC) also have implemented good herd health management practices (reflected in low SCC). The SPC and SCC results for all grade A and B dairy producers who submitted results to the Wisconsin Department of Agriculture, Trade, and Consumer Protection, in each month of 2012 were analyzed. Grade A producer SPC results were less dispersed than grade B producer SPC results. Regression analysis showed a highly significant correlation between SPC and SCC, but the R2 value was very small (0.02–0.03), suggesting that many other factors, besides SCC, influence SPC. Average SCC (across 12 mo) for grade A and B producers decreased with an increase in the number of monthly SPC results (out of 12) that were ≤25,000 cfu/mL. A chi-squared test of independence showed that the proportion of monthly SCC results >250,000 cells/mL varied significantly depending on whether the corresponding SPC result was ≤25,000 or >25,000 cfu/mL. This significant difference occurred in all months of 2012 for grade A and B producers. The results suggest that a generally consistent level of skill exists across dairy production practices affecting SPC and SCC.  相似文献   

13.
The objective of this study was to estimate the impact of somatic cell count (SCC) in early lactation (SCCel) [measured between 5 to 14 d in milk (DIM)] of dairy heifers on test-day milk yield (MY) during the first lactation.In total, 117,496 four-weekly test-day records of 14,243 heifers were used. A multilevel regression analysis, which included test-day SCC among the explanatory variables, revealed that an increase by one unit of the natural log-transformed SCCel (LnSCCel) was on average associated with a decrease in MY of 0.13 kg/d later in lactation. As an example, a heifer with an SCCel of 50,000 cells/mL measured at 10 DIM was estimated to produce 119 and 155 kg more milk during its first lactation than heifers with a SCCel of 500,000 and 1,000,000 cells/mL, respectively. When not accounting for test-day SCC, the effect of LnSCCel on MY was larger, indicating that part of the negative impact of elevated SCCel was associated with elevated test-day SCC later in lactation.Furthermore, an elevated SCCel at 14 DIM had a larger impact than an equally elevated SCCel measured at an earlier DIM. In addition, the negative effect of an elevated SCCel remained present during almost the entire first lactation in a subgroup of heifers with a second test-day SCC 相似文献   

14.
The main objective of this study was to investigate associations between serum concentrations of several blood variables related to metabolic and immunological status around calving, and udder health measured as milk somatic cell counts (SCC), Box-Cox transformed to bcSCC, at first test-milking in 287 primiparous cows in 20 Swedish dairy herds. Possible systematic effects of breed and age at calving on blood profiles were also investigated. Ordinary linear regression models, with robust standard errors and adjusting for clustering within herds, were used to investigate associations between blood variables and bcSCC. Hierarchical linear regression models, with herd as random factor, were used to investigate systematic effects on blood variables. The results showed that greater concentrations of β-hydroxybutyrate (BHBA) and glucose before calving were associated with lesser bcSCC at first test-milking, whereas greater concentrations of nonesterified fatty acids (NEFA) before calving and greater delta NEFA (describing the difference in concentrations before and after calving) were associated with greater bcSCC at first test-milking. In addition, greater α-tocopherol concentrations in the period −5 to +5 d relative to calving were associated with lesser bcSCC at first test-milking, whereas greater concentrations of collectin of 43 kDa (CL-43) postpartum (1 to 21 d after calving) were associated with greater bcSCC. Postpartum concentrations of conglutinin and haptoglobin were also associated with bcSCC, but not independently of each other. Moreover, significant breed differences were observed for insulin, urea nitrogen, conglutinin, cholesterol, NEFA, and CL-43, the latter 3 as an interaction with period. Overall, cows of the Swedish Red breed had greater concentrations of insulin, cholesterol, urea nitrogen, and conglutinin, and lesser concentrations of NEFA and CL-43 than cows of the Swedish Holstein breed. Age at calving as main effect was significantly associated with BHBA, glucose, insulin, NEFA, urea nitrogen, and conglutinin. Heifers calving at >27 mo of age had greater BHBA and NEFA values, and lesser glucose, insulin, and urea nitrogen values compared with heifers calving at <27 mo. Heifers calving at an age <25 mo had greater conglutinin and urea nitrogen values, and lesser NEFA values compared with heifers calving at >25 mo. The results show that there are several associations among metabolites, immunological variables, and udder health of primiparous cows, but also that these variables vary between breeds and between cows of different age at first calving.  相似文献   

15.
The main objective of this study was to evaluate the risk factors for late embryonic loss (LEL) in supplemented grazing dairy cows. Additional objectives were to assess the incidence of LEL and its association with the reproductive performance of cows. A data set containing productive, reproductive, and health records of 13,551 lactations was used. A retrospective case-control study involving 631 cows with LEL (cases) and 2,524 controls (4 controls per case within each study year) was run. A case of LEL was defined when the embryo had no heartbeat or there was evidence of detached membranes or floating structures including embryo remnants by ultrasonography (US) at 28 to 42 d post-artificial insemination (AI), whereas a non-case was defined as a cow diagnosed with positive pregnancy by US 28 to 42 d post-AI and reconfirmed as pregnant 90 ± 7 d post-AI. Four controls per case were randomly selected from the non-cases with a temporal matching criterion (±3 d around the date of the fecundating AI of the case). Multivariable logistic models were offered with the following predictors: year of LEL (2011 through 2015), season of LEL (summer vs. fall vs. winter vs. spring), parity (1 vs. 2 vs. ≥3), uterine disease (UD), non-uterine disease (NUD), body condition score at parturition, body condition score at 28 to 42 d post-AI (BCS-LEL), days in milk (DIM), and daily milk yield (MY). Statistical significance was set at P < 0.05 and a tendency was set at P ≤ 0.10. We found that 4.7, 22, and 23% of cows had LEL, UD, and NUD, respectively. Cases tended to have higher daily MY than controls (32.5 vs. 31.8 kg); also, cases had much longer calving to pregnancy interval (226 vs. 118 d), lower hazard of pregnancy [hazard ratio = 0.39, 95% confidence interval (CI) = 0.35–0.43], and higher odds for non-pregnancy [odds ratio (OR) = 2.89, 95% CI = 2.37–3.54] than controls. We found that the odds for LEL increased with parity number (OR = 2.48, 95% CI = 1.99–3.08 for parity ≥3) and with BCS-LEL <2.50 (OR = 1.81, 95% CI = 1.33–2.47). Conversely, the odds for LEL decreased with BCS-LEL >3.00 (OR = 0.70, 95% CI = 0.53–0.91). The odds for LEL increased with UD (OR = 1.23, 95% CI = 1.01–1.49), NUD (OR = 1.24, 95% CI = 1.01–1.54), DIM (OR = 1.03, 95% CI = 1.00–1.05), and daily MY (OR = 1.14, 95% CI = 1.04–1.25) in univariable models only. Finally, the odds for LEL were not associated with year, season, DIM, and body condition score at parturition. In conclusion, LEL is associated with extended calving to pregnancy interval, and among its risk factors are parity number and BCS-LEL.  相似文献   

16.
These experiments were designed to investigate nutritional means of reducing urine N excretion by grazing cows. In experiment 1, 36 Holstein-Friesian cows averaging 92 d in milk were fed either 1 or 6 kg of a high protein concentrate or 6 kg of a low protein concentrate. Pasture dry matter (DM) intake was higher for cows fed 1 kg of high protein concentrate (15.4 +/- 0.62 kg/d) than for cows fed 6 kg of low protein concentrate (13.4 +/- 0.55) but not for cows fed 6 kg of high protein concentrate (13.9 +/- 0.96). The reduction in pasture intake per kg of concentrate DM ingested amounted to 0.35 and 0.47 kg of pasture DM for cows fed 6 kg of high protein and 6 kg of low protein concentrate, respectively. Milk yield and milk protein yield were higher for cows fed 6 kg of high protein concentrate than for cows fed 1 kg of high protein concentrate. Cows fed 6 kg of high protein concentrate had the highest levels of N intake, total N excretion, and urine N excretion. The proportion of N excreted in the urine was lowest for cows fed 6 kg of low protein concentrate. Milk N excretion as a proportion of ingested N was higher for cows fed 6 kg of low protein concentrate than for cows fed 6 kg of high protein concentrate but not for cows fed 1 kg of high protein concentrate. In experiment 2, 24 Holstein-Friesian cows averaging 211 d in milk were supplemented with 4 kg of rolled barley or 4.32 kg of NaOH-treated barley. Milk yield and milk protein yield tended to be higher for cows fed rolled barley than for cows fed NaOH-treated barley. There was no difference in N intake, fecal N excretion, urinary N excretion, or milk N output between diets. Milk urea N concentration was lower for cows fed rolled barley. Significant positive linear relationships were found between N intake and fecal N excretion, urine N excretion, and milk N excretion in experiment 1. In experiment 2, the relationships between N intake and fecal N excretion and urine N excretion were curvilinear, with urine N excretion increasing at a decreasing rate, and fecal N excretion increasing at an increasing rate, as N intake increased. The N excreted by dairy cows may be partitioned to fecal N if supplements based on high concentrations of fermentable organic matter and low concentrations of N are fed. Refinement of this nutritional strategy may allow reduced N excretion without reducing animal performance.  相似文献   

17.
There is a direct relationship between elevated somatic cell count (SCC) in an individual cow milk production and milk loss. This relationship has been used at the herd level to estimate an overall herd milk loss due to subclinical mastitis and to use recovery of this lost milk as a financial benefit to cover the cost of intervention strategies to improve milk quality. The objective of this study was to estimate the recoverable milk revenue on a per cow basis for herds moving from one herd average SCC level to a newer, lower level. Test-day records from 1,005,697 dairy cows in 3,741 herds between 2009 to 2019 were used. Milk yield loss for each cow in each herd on test day was estimated using a mixed effects regression equation, and then summed to estimated total herd milk loss. These herd average daily milk loss estimates were then related to the bulk tank SCC, and the distribution of underlying individual cow SCC were examined. The distributions in daily herd milk loss for various bulk tank SCC values were generated, and estimates of recoverable milk loss were generated to simulate a herd moving from their current bulk tank SCC to a new lower level. The results indicate that estimates of total herd milk yield loss vary with the distribution of cow-level SCC and parity within the herd, so it is imperative that milk loss be calculated on a per cow basis. Further, the recoverable milk loss estimates based on moving to a lower bulk tank SCC where milk loss is still occurring was relatively small compared with the traditional assumption that all milk loss would be recovered, and less than most herd owners and advisors would expect.  相似文献   

18.
Periparturient hypocalcemia is frequently observed and considered as a gateway disease that is associated with various health issues. The objective of this study was to evaluate the association of hypocalcemia with early-lactation milk yield, reproductive performance, and culling across a large number of different managerial systems. A prospective cohort study was conducted based on a convenience sample of 125 dairy herds from 8 federal states of Germany between February 2015 and August 2016. A blood sample was drawn from 1,709 animals within 48 h after parturition and analyzed for serum calcium concentration. After discarding cows (n = 283) with missing data, a total of 1,426 cows were considered for final analyses. The median time from calving to sampling was 14.0 h (interquartile range = 5.0–24.9 h). For each herd, a record of the herd management software was requested 150 d after the last cow was sampled. Serum calcium concentration of each cow was associated with early-lactation milk yield (Dairy Herd Improvement Association equivalent test 1 to 3), reproductive performance [days in milk (DIM) at first artificial insemination (AI), pregnancy at first AI, time to pregnancy within 150 DIM], and culling (until 60 DIM) data. Generalized linear mixed models were used to analyze continuous or categorical data. Shared frailty models were used for time to event data. Five different thresholds were used to define hypocalcemia. Thresholds ranged from 1.8 to 2.2 mmol/L using 0.1-mmol/L increments. Clinical hypocalcemia was defined as serum calcium concentration <2.0 mmol/L in combination with clinical signs (e.g., recumbency). The effect of hypocalcemia on milk yield was conditional on parity. In primiparous cows a serum calcium concentration <2.0 mmol/L (6.4% of cows were below this threshold) had no effect on milk production, whereas there was a tendency for multiparous cows with a serum calcium concentration <2.1 mmol/L (63.2% of cows were below this threshold) to produce 0.80 kg/d more milk compared with multiparous cows at or above the threshold. Multiparous cows suffering from clinical hypocalcemia produced 2.19 kg/d less milk compared with normocalcemic cows in early lactation. Calcium status was not associated with days to first insemination. Cows with a serum calcium concentration <1.9 mmol/L (34.6% of cows below this threshold) had decreased odds (odds ratio = 0.56) of pregnancy at first AI. A serum calcium concentration <1.8 mmol/L (24.1% of cows below this threshold) had a significant effect on time to pregnancy. Compared with animals with a serum calcium concentration ≥1.8 mmol/L, the hazard of becoming pregnant within 150 DIM was reduced when cows had a serum calcium concentration <1.8 mmol/L (hazard ratio = 0.68). Cows with a serum calcium concentration <2.0 mmol/L (44.3% of cows were below this threshold) had a 1.69 times greater hazard of being culled within the first 60 DIM compared with normocalcemic animals. The present study shows that the association of hypocalcemia with milk yield was conditional on parity and serum calcium concentration measured once within 48 h after calving. Considering reproductive performance and culling in early lactation, a negative effect of postpartum hypocalcemia was demonstrated.  相似文献   

19.
《Journal of dairy science》2022,105(8):6447-6459
Udder health in dairy herds is a very important issue given its implications for animal welfare and the production of high-quality milk. Somatic cell count (SCC) is the most widely used means of assessing udder health status. However, differential somatic cell count (DSCC) has recently been proposed as a new and more effective means of evaluating intramammary infection dynamics. Differential SCC represents the combined percentage of polymorphonuclear neutrophils and lymphocytes (PMN-LYM) in the total SCC, with macrophages (MAC) accounting for the remaining proportion. The aim of this study was to evaluate the association between SCC and DSCC and the detailed milk protein profile in a population of 1,482 Holstein cows. A validated reversed-phase HPLC method was used to quantify 4 caseins (CN), namely αS1-CN, αS2-CN, κ-CN, and β-CN, and 3 whey protein fractions, namely β-lactoglobulin, α-lactalbumin, and lactoferrin, which were expressed both quantitatively (g/L) and qualitatively (as a percentage of the total milk nitrogen content, %N). A linear mixed model was fitted to explore the associations between somatic cell score (SCS) combined with DSCC and the protein fractions expressed quantitatively and qualitatively. We ran an additional model that included DSCC expressed as PMN-LYM and MAC counts, obtained by multiplying the percentages of PMN-LYM and MAC by SCC for each cow in the data set. When the protein fractions were expressed as grams per liter, SCS was significantly negatively associated with almost all the casein fractions and positively associated with the whey protein α-lactalbumin, while DSCC was significantly associated with αS1-CN, β-CN, and α-lactalbumin, but in the opposite direction to SCS. We observed the same pattern with the qualitative data (i.e., %N), confirming opposite effects of SCS and DSCC on milk protein fractions. The PMN-LYM count was only slightly associated with the traits of concern, although the pattern observed was the same as when both SCS and DSCC were included in the model. The MAC count, however, generally had a greater impact on many casein fractions, in particular decreasing both β-CN content (g/L) and proportion (%N), and exhibited the opposite pattern to the PMN-LYM count. Our results show that information obtained from both SCS and DSCC may be useful in assessing milk quality and protein fractions. They also demonstrate the potential of MAC count as a novel udder health trait.  相似文献   

20.
A basal mixed ration supplying 36 mg of Zn/kg of dry matter (DM) was supplemented with 1 of 4 concentrates differing in level and form of dietary Zn. The concentrates were fed at 2 kg/cow per day and contained 300 mg of Zn/kg (to supply the total recommended level, according to NRC (2001); R) or 60 mg of Zn/kg (to supply 0.66 of the total recommended level; L), either supplemented as ZnO (I) or organically chelated Zn (O). Forty-four Holstein-Friesian dairy cows (12 primiparous and 32 multiparous), on average 31 d (SD ± 11.4) into lactation, were allocated to 1 of the 4 treatments. All cows remained on the treatment for 14 wk. The data was analyzed by ANOVA as a 2 × 2 factorial design. Dry matter intake averaged 23.5 kg/d and did not differ between treatments. Cows supplemented with organically chelated Zn at the recommended level of inclusion (RO) had a higher milk yield (37.6 kg/d) than those fed inorganic Zn at the recommended level (RI; 35.2 kg/d) or organically chelated Zn at the low level (LO; 35.2 kg/d), but was not different from those fed inorganic Zn at the low level (LI; 36.0 kg/d). Milk composition was unaffected by dietary treatment. Animals that received the low level of Zn (LI and LO) had higher somatic cell counts [3.97 and 3.93 versus 4.35 and 4.55 (loge) for RI, RO, LI, and LO, respectively] and milk amyloid A levels than those receiving the recommended levels (RO and RI). There was no effect of treatment on body condition score, body weight, or locomotion score. Hoof hardness improved over the duration of the study but there were no differences between treatments. Similarly, blood plasma mineral levels for Zn, Cu, Mo, and Fe were not affected by treatment, whereas there was a trend for increased ceruloplasmin levels in cows receiving the recommended compared with the low level of Zn, but there was no effect of mineral form. There was also no effect of treatment on superoxide dismutase activity or blood hematology. It is concluded that supplementing Zn at the recommended level reduced somatic cell counts and milk amyloid A levels, whereas supplementation in an organic form at the recommended level also increased milk yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号