首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to investigate the effects of grain sources and forage provision on growth performance, blood metabolites, and feeding behaviors of dairy calves. Sixty 3-d-old Holstein dairy calves (42.2 ± 2.5 kg of body weight) were used in a 2 × 3 factorial arrangement with the factors being grain sources (barley and corn) and forage provision (no forage, alfalfa hay, and corn silage). Individually housed calves were randomly assigned (n = 10 calves per treatment: 5 males and 5 females) to 6 treatments: (1) barley grain (BG) without forage supplement, (2) BG with alfalfa hay (AH) supplementation, (3) BG with corn silage (CS) supplementation, (4) corn grain (CG) without forage supplement, (5) CG with AH supplementation, and (6) CG with CS supplementation. All calves had ad libitum access to water and starter feed throughout the experiment. All calves were weaned on d 49 and remained in the study until d 63. Starter feed intake and average daily gain (ADG) was greater for calves fed barley than those fed corn during the preweaning and overall periods. Calves supplemented with CS had greater final body weight and postweaning as well as overall starter feed intake than AH and non-forage-supplemented calves. During the preweaning and overall periods, feeding of CS was found to increase ADG compared with feeding AH and nonforage diets. However, feed efficiency was not affected by dietary treatments. Calves supplemented with CS spent more time ruminating compared with AH and control groups; nonnutritive oral behaviors were the greatest in non-forage-supplemented calves. Regardless of the grain sources, the rumen pH value was greater for AH calves compared with CS and non-forage-supplemented calves. Blood concentration of BHB was greater for CS-supplemented calves compared with AH and non-forage-supplemented calves. Furthermore, body length and heart girth were greater for calves fed barley compared with those fed corn, and also in forage-supplemented calves compared with non-forage-supplemented calves. These results showed no interactions between grain sources and forage provision on calf performance; however, the inclusion of CS and barley in starter diets could enhance the growth performance of Holstein calves during the transition from liquid to solid feed.  相似文献   

2.
A meta-analysis of the potential effect of forage provision on growth performance and rumen fermentation of dairy calves was conducted using published data from the literature (1998–2016). Meta-regression was used to evaluate the effects of different forage levels, forage sources, forage offering methods, physical forms of starter, and grain sources on the heterogeneity of the results. We considered 27 studies that reported the effects of forage provision to dairy calves. Estimated effect sizes of forage were calculated on starter feed intake, average daily gain (ADG), feed efficiency (FE), body weight (BW), and rumen fermentation parameters. Intake of starter feed, ADG, BW, ruminal pH, and rumen molar proportion of acetate increased when supplementing forage but FE decreased. Heterogeneity (the amount of variation among studies) was significant for intake of starter feed, ADG, FE, final BW, and rumen fermentation parameters. Improving overall starter feed intake was greater in calves offered alfalfa hay compared with those offered other types of forages. During the milk feeding and overall periods, improving ADG was greater for calves fed a high level of forage (>10% in dry matter) compared with those fed a low level of forage (≤10% in dry matter) diets. The advantages reported in weight gain at a high level of forage could be due to increased gut fill. Improving overall ADG was lower for calves offered forages with textured starter feed compared with ground starter feed. The meta-regression analysis revealed that changes associated with forage provision affect FE differently for various forage sources and forage offering methods during the milk-feeding period. Forage sources also modulated the effect of feeding forage on ruminal pH during the milk-feeding period. In conclusion, forage has the potential to affect starter feed intake and performance of dairy calves, but its effects depend on source, level, and method of forage feeding and physical form of starter feed independently of grain sources included in the starter feed.  相似文献   

3.
We investigated the interactive effects of forage source and forage particle size (PS) as a free-choice provision on growth performance, rumen fermentation, and behavior of dairy calves fed texturized starters. Forty-eight Holstein calves (42 ± 3 kg of body weight) were randomly assigned (n = 12 calves per treatment) in a 2 × 2 factorial arrangement of treatments with the factors of forage source [alfalfa hay (AH) and wheat straw (WS)] and forage PS [(AH: medium = 1.96 mm or long = 3.93 mm) and (WS: medium = 2.03 mm or long = 4.10 mm), as geometric mean diameters]. The treatments were (1) AH with medium PS (AH-MPS), (2) AH with long PS (AH-LPS), (3) WS with medium PS (WS-MPS), and (4) WS with long PS (WS-LPS). Regardless of forage PS, the preweaning starter intake, dry matter intake, metabolizable energy intake, weaning body weight, and forage intake were greater for AH calves than WS calves. Average daily gain, average daily gain/metabolizable energy intake, feed efficiency, and final body weight of the calves did not differ among groups. An interaction of forage source and forage PS influenced acetate, propionate, and acetate-to-propionate ratio in the rumen on d 35, with the greatest acetate proportion and acetate-to-propionate ratio, but the least propionate proportion for AH-MPS calves than the other calves. The total volatile fatty acid concentration and the rumen proportions of propionate (d 70), butyrate (d 35), and valerate (d 35) were greater in AH-MPS calves than in AH-LPS calves. Calves fed AH had greater total volatile fatty acid concentration (d 35 and 70) and propionate proportion (d 70), but lesser ruminal proportions of butyrate (d 35 and 70), valerate (d 35 and 70), and acetate-to-propionate ratio (d 70) compared with calves fed WS. The ruminal valerate proportion (d 70) was greatest in WS-MPS calves than the other calves. An interaction of forage source and forage PS influenced preweaning standing time and starter eating time, with the least standing time for WS-MPS calves and the greatest eating starter time for AH-LPS calves. Calves fed AH spent less time for rumination, but devoted more time to non-nutritive oral behaviors than WS calves. Calves fed forage with long PS spent more time for rumination, eating forage, and spent less time lying and non-nutritive oral behaviors than medium PS. In conclusion, forage source and PS interacted, affecting behavior and rumen fermentation when calves were fed texturized starters. In addition, a desirable ruminal pH in dairy calves can be obtained with texturized starters.  相似文献   

4.
This study evaluated the interactive effects of forage provision on performance, nutritional behavior, apparent digestibility, rumen fermentation, and blood metabolites of dairy calves when corn grains with different fermentability were used. Sixty 3-d-old Holstein calves were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement. Dietary treatments were (1) steam-flaked (SF) corn without alfalfa hay (AH) supplementation (SF-NO), (2) SF corn with AH supplementation (SF-AH), (3) cracked (CR) corn without AH supplementation (CR-NO), and (4) CR corn with AH supplementation (CR-AH). All calves received the same amount of pasteurized whole milk and weaned on d 56 of the experiment; the study was terminated on d 70. Steam-flaked corn contained higher amounts of gelatinized starch in comparison with cracked corn (44.1 vs. 12.5% of total starch, respectively). Starter intake was not affected by corn processing methods or AH provision during the pre- or postweaning periods. However, we noted an interaction between corn processing methods and forage supplementation for starter intake during d 31 to 50 of the experiment, where calves fed on SF-AH starter had greater starter intake than those fed SF-NO starter, but the starter intake was not different between CR-NO and CR-AH fed calves. Furthermore, AH increased average daily gain (ADG) of calves fed an SF-based diet but not in calves fed a CR-based diet during the preweaning and overall periods. Interaction between forage provision and time was significant for ADG and feed efficiency, as calves supplemented with forage had higher ADG (0.982 vs. 0.592, respectively) and feed efficiency compared with forage unsupplemented calves at the weaning week. Forage supplementation resulted in more stable ruminal condition compared with nonforage-fed calves, as evidenced by higher ruminal pH (5.71 vs. 5.29, respectively) at postweaning and lower non-nutritive oral behavior around weaning time (55 vs. 70.5 min, respectively). The concentration of blood β-hydroxybutyrate was also greater in calves supplemented with forage than in unsupplemented calves. Results of the present study indicated that performance response and skeletal growth were the same between 2 corn processing methods. Forage provision improved ADG of calves fed the SF-based diet, but not the CR-based diet throughout the study.  相似文献   

5.
One hundred seventy-nine Holstein male calves [44.7 kg of body weight (BW) and 8.3 d of age] participated in a series of 3 experiments to evaluate the effect of different forage sources on performance, apparent digestibility, and feeding behavior. Animals in each study were randomly assigned to 1 of 3 different dietary treatments: control (CON) calves were fed starter feed without any forage provision (this treatment was repeated in each of the 3 experiments), and the 2 other treatments consisted of the same starter feed plus a forage source: chopped alfalfa (AH) or rye-grass hay (RH) in the first study; chopped oat hay (OH) or chopped barley straw (BS) in the second study; corn silage (CS) or triticale silage (TS) in the third study. All calves were offered 2L of milk replacer (MR) at 12.5% dry matter (DM) twice daily via a bottle until 50 d of age, and 2L of MR at 12.5% DM during the week before weaning (57 d of age). The study finished when calves were 71 d old. Starter feed, MR, and forage intakes were recorded daily and BW weekly. Calves were individually housed and bedded with wood shavings. Compared with CON, animals receiving OH, TS, and BS consumed more starter feed (0.88 vs. 1.14, 1.17, 1.06 kg/d, respectively) and had greater average daily gain (0.72 vs. 0.93, 0.88, 0.88 kg/d, respectively). Animals in treatments RH, BS, CS, and TS consumed less forage (51 g/d) than AH (120 g/d) and OH (101 g/d) calves. Apparent organic matter, DM, and neutral detergent fiber digestibilities did not differ among treatments (81.5, 81.1, and 54.4%, respectively). Apparent crude protein digestibility was greater in RH, CS, and AH treatments than in CON (80.5 vs. 76.4%, respectively). Compared with CON calves, animals in the AH treatment spent less time eating starter feed and lying, animals in AH and RH treatments spent more time ruminating, with odds ratios (OR) of 5.24 and 5.40, respectively. The AH and RH calves devoted less time to performing nonnutritive oral behaviors (OR: 0.38 and 0.34, respectively), and TS calves tended to devote less time to perform nonnutritive oral behaviors (OR: 0.21) 1h after being offered MR and solid feed. In conclusion, free-choice provision of a forage source to young calves improves feed intake and performance without impairing digestibilities of DM, organic matter, crude protein, and neutral detergent fiber, and, depending on forage source, reduces nonnutritive oral behaviors and stimulates rumination.  相似文献   

6.
The objective of this study was to investigate the effects of the physical forms of starter and forage sources on feed intake, growth performance, rumen pH, and blood metabolites of dairy calves. Forty male Holstein calves (41.3 ± 3.5 kg of body weight) were used (n = 10 calves per treatment) in a 2 × 2 factorial arrangement of treatments with the factors being physical forms of starter (coarse mash and texturized) and forage source [alfalfa hay (AH) and wheat straw (WS)]. Individually housed calves were randomly assigned to 1 of the 4 dietary treatments, including (1) coarsely mashed (CM; coarse ground grains combined with a mash supplement) starter feed with AH (CM-AH), (2) coarsely mashed starter feed with WS (CM-WS), (3) texturized feed starter (TF; includes steam-flaked corn, steam-rolled barley combined with a pelleted supplement) with AH (TF-AH), and (4) TF with WS (TF-WS). Both starters had the same ingredients and nutrient compositions but differed in their physical forms. Calves were weaned on d 56 and remained in the study until d 70. All calves had free access to drinking water and the starter feeding at all times. No interaction was detected between the physical forms of starter feeds and forage source concerning starter intake, dry matter intake, metabolizable energy (ME) intake, average daily gain (ADG)/ME intake, ADG, and feed efficiency (FE). The preweaning and overall starter feed intake, dry matter intake, and ME intake were greater for calves fed TF starter diets than those fed CM starter diets. The ADG/ME intake was greater for calves fed TF starter diets than that fed CM starter. The FE was greater for calves fed TF starter diets compared with those fed CM starter during the preweaning, postweaning, and overall periods. The WS improved FE during the postweaning period compared with AH. The physical form of starter, forage source, and their interaction did not affect plasma glucose, triglycerides, and very low-density lipoprotein concentrations. Ruminal pH was greater for calves fed TF starter diets than those fed CM starter on d 30 of life. An interaction was observed between the physical forms of starter diets and forage source for β-hydroxybutyrate on d 28. These results showed that when starter diets contained similar ingredients and nutrient contents, processing calf starters to reduce the number of fine particles can improve the growth performance in dairy calves. Furthermore, the provision of WS improved FE and ADG of calves during the postweaning period.  相似文献   

7.
We examined the effect of replacing corn silage (CS) with reconstituted alfalfa hay (RAH) or reconstituted beet pulp (RBP) in the starter diets on feeding behavior, sorting, and health criteria using 54 neonatal female Holstein calves that were assigned randomly to 3 groups receiving starter diets containing CS (10% on a dry matter basis), RAH, or RBP. The starter diets had the same nutrient composition and moisture level but differed in particle size distribution. Calves fed CS tended to have a lower intermeal interval compared with calves fed RAH before weaning; however, meal frequency and duration, eating rate, and meal size were not affected by treatment before and after weaning, which resulted in no changes in feed intake and time spent eating. Rumination frequency was higher for calves fed CS than for calves fed RAH or RBP after weaning. Feeding RBP decreased rumination duration compared with CS and RAH after weaning; however, calves fed RBP had a higher rumination bout interval compared with calves fed CS. Calves fed CS spent more time ruminating compared with calves fed RAH or RBP after weaning. Feeding CS tended to decrease and decreased time devoted to standing and lying, respectively, compared with calves fed RBP; however, calves fed RBP tended to spend more time on nonnutritive oral behaviors compared with calves fed RAH. Calves fed CS sorted against particles retained on the 8-mm sieve of the Penn State Particle Separator (PSPS) and for particles retained on the 1.18-mm sieve of the PSPS. Feeding RAH increased sorting for particles retained on the 8- and 1.18-mm sieves of the PSPS. Calves fed RBP sorted only for particles retained on the 1.18-mm sieve of the PSPS. Calves fed RBP tended to be more susceptible to developing pneumonia compared with calves fed CS or RAH; however, frequency and duration of diarrhea and pneumonia or number of days needed to medicate the diseases were unchanged across treatment groups. Initial (d 3) blood total protein concentration was similar (6.51 g/dL) across treatment groups. Overall, replacing CS with RAH or RBP did not affect time devoted to eating and feed intake due to no significant changes in meal size or intermeal interval before and after weaning. Calves showed feed sorting at the extent to which they balanced intake of nutrients and met their nutritional needs. Calves in general were healthy; therefore, CS, RAH, or RBP can be used interchangeably based on availability and competitive feed price.  相似文献   

8.
Sugar supplementation can stimulate rumen microbial growth and possibly fiber digestibility; however, excess ruminal carbohydrate availability relative to rumen-degradable protein (RDP) can promote energy spilling by microbes, decrease rumen pH, or depress fiber digestibility. Both RDP supply and rumen pH might be altered by forage source and monensin. Therefore, the objective of this study was to evaluate interactions of a sugar source (molasses) with monensin and 2 forage sources on rumen fermentation, total tract digestibility, and production and fatty acid composition of milk. Seven ruminally cannulated lactating Holstein cows were used in a 5 × 7 incomplete Latin square design with five 28-d periods. Four corn silage diets consisted of 1) control (C), 2) 2.6% molasses (M), 3) 2.6% molasses plus 0.45% urea (MU), or 4) 2.6% molasses plus 0.45% urea plus monensin sodium (Rumensin, at the intermediate dosage from the label, 16 g/909 kg of dry matter; MUR). Three chopped alfalfa hay diets consisted of 1) control (C), 2) 2.6% molasses (M), or 3) 2.6% molasses plus Rumensin (MR). Urea was added to corn silage diets to provide RDP comparable to alfalfa hay diets with no urea. Corn silage C and M diets were balanced to have 16.2% crude protein; and the remaining diets, 17.2% crude protein. Dry matter intake was not affected by treatment, but there was a trend for lower milk production in alfalfa hay diets compared with corn silage diets. Despite increased total volatile fatty acid and acetate concentrations in the rumen, total tract organic matter digestibility was lower for alfalfa hay-fed cows. Rumensin did not affect volatile fatty acid concentrations but decreased milk fat from 3.22 to 2.72% in corn silage diets but less in alfalfa hay diets. Medium-chain milk fatty acids (% of total fat) were lower for alfalfa hay compared with corn silage diets, and short-chain milk fatty acids tended to decrease when Rumensin was added. In whole rumen contents, concentrations of trans-10, cis-12 C18:2 were increased when cows were fed corn silage diets. Rumensin had no effect on conjugated linoleic acid isomers in either milk or rumen contents but tended to increase the concentration of trans-10 C18:1 in rumen samples. Molasses with urea increased ruminal NH3-N and milk urea N when cows were fed corn silage diets (6.8 vs. 11.3 and 7.6 vs. 12.0 mg/dL for M vs. MU, respectively). Based on ruminal fermentation characteristics and fatty acid isomers in milk, molasses did not appear to promote ruminal acidosis or milk fat depression. However, combinations of Rumensin with corn silage-based diets already containing molasses and with a relatively high nonfiber carbohydrate:forage neutral detergent fiber ratio influenced biohydrogenation characteristics that are indicators of increased risk for milk fat depression.  相似文献   

9.
We investigated the effect of reconstitution of alfalfa hay on starter feed intake, nutrient digestibility, growth performance, rumen fermentation, selected blood metabolites, and health criteria of dairy calves during the pre- and postweaning periods. A total of 20 newborn male Holstein calves (3 d of age; 40.3 ± 1.30 kg of body weight; ±SE) were assigned randomly to 1 of 2 treatments, a starter feed containing either 10% dry (AH) or reconstituted alfalfa hay (RAH), each consisting of 10 calves. Alfalfa hay was reconstituted with water 24 h before feeding to achieve a theoretical dry matter content of 20%. Both starter feeds had the same ingredients and nutrient compositions but differed in their dry matter content (91.2 and 83.8% dry matter for AH and RAH, respectively). Calves were weaned on d 50 and remained on the study until d 70. All calves had free access to fresh and clean drinking water and the starter feed at all times. During the study period, the average maximum temperature-humidity index was 73.8 units, indicating no degree of environmental heat load for dairy calves. Starter feed dry matter intake, total dry matter intake, and body weight (at weaning and at the end of the trial) were unaffected by treatment. Nutrient intake (except for total ether extract intake) increased during the postweaning period compared with the preweaning period. Average daily gain and feed efficiency were unchanged between treatments. Calves had higher average daily gain and skeletal growth during the postweaning period; however, feed efficiency was lower during the post- versus preweaning period. Calves fed RAH gained more hip width and body barrel compared with calves fed AH during the preweaning and all studied periods, respectively. Rectal temperature was similar between treatments, but feeding RAH decreased fecal score and general appearance score during the preweaning period. Apparent total-tract nutrient digestibility was not affected by reconstitution of alfalfa hay; however, reconstitution increased total-tract digestibility of neutral detergent fiber during the postweaning period. Ruminal fluid pH, and concentrations and profile of total volatile fatty acids were unchanged between treatments. Molar concentration of propionate and acetate to propionate ratio increased and decreased, respectively, during the postweaning period. Reconstitution of alfalfa hay did not affect concentrations of glucose, β-hydroxybutyrate, blood urea N, and albumin, and albumin to globulin ratio during the studied periods; however, reconstitution increased concentration of blood total protein during the overall period. Calves had higher concentrations of blood glucose and globulin during the preweaning and β-hydroxybutyrate during the postweaning period. Overall, reconstitution of alfalfa hay did not interact with calf phase (pre- vs. postweaning) to affect dry matter intake, growth performance, and metabolic indications of rumen development (measured as ruminal volatile fatty acids and selected blood metabolites), but improved health-related variables (fecal score and general appearance score) during the preweaning period.  相似文献   

10.
A study was conducted to evaluate the effect of including alfalfa preserved either as silage or long-stem or chopped hay on DMI and milk fat production of dairy cows fed corn silage-based diets with supplemental tallow (T). Fifteen Holstein cows that averaged 117 DIM were used in a replicated 5 x 5 Latin square design with 21-d periods. Treatments (DM basis) were: 1) 50% corn silage:50% concentrate without T (CS); 2) 50% corn silage:50% concentrate with 2% T (CST); 3) 25% corn silage:25% short-cut alfalfa hay:50% concentrate with 2% T (SAHT); 4) 25% corn silage:25% long-cut alfalfa hay:50% concentrate with 2% T (LAHT); and 5) 25% corn silage:25% alfalfa silage:50% concentrate with 2% T (AST). Cows were allowed ad libitum consumption of a TMR fed 4 times daily. Diets averaged 16.4% CP and 30.3% NDF. Including 2% T in diets with corn silage as the sole forage source decreased DMI and milk fat percentage and yield. Replacing part of corn silage with alfalfa in diets with 2% T increased milk fat percentage and yield. The milk fat of cows fed CST was higher in trans-10 C18:1 than that of cows fed diets with alfalfa. No effect of alfalfa preservation method or hay particle length was observed on DMI and milk production. The milk fat percentage and yield were lower, and the proportion of trans-10 C18:1 in milk fat was higher for cows fed LAHT than for cows fed SAHT. Alfalfa preservation method had no effect on milk fat yield. Ruminal pH was higher for cows fed alfalfa in the diets, and it was higher for cows fed LAHT than SAHT. Feeding alfalfa silage or chopped hay appears to be more beneficial than long hay in sustaining milk fat production when 2% T is fed with diets high in corn silage. These results support the role of trans fatty acids in milk fat depression.  相似文献   

11.
《Journal of dairy science》2022,105(10):8087-8098
During weaning, withdrawal of milk replacer is not directly compensated for by an increase in solid feed intake. Therefore, greater fat inclusion in the starter might mitigate this temporary dietary energy decline. However, fat inclusion in solid feeds may generally limit rumen fermentability and development. To address these potentially conflicting outcomes, we conducted 2 experiments to evaluate the effect of supplementing a high-fat extruded pellet mixed with a calf starter on feed intake, performance, and nutrient digestibility in calves. In experiment 1, 60 Holstein bull calves were blocked by serum IgG (2,449 ± 176 mg/dL) and date of arrival (2.5 ± 0.5 d of age). Within each block, calves were randomly assigned to 1 of 3 treatments: a standard control calf starter (CON; 3.1% fat) and mixtures of CON with 10% inclusion of 1 of 2 different high-fat extruded pellets containing 85% of either hydrogenated free palm fatty acids (PFA, 7.1% fat) or hydrogenated rapeseed triglycerides (RFT, 6.7% fat). Calves were offered milk replacer up to 920 g/d until 42 d of age, followed by a gradual weaning period of 7 d. Calves had ad libitum access to the starter diets, straw, and water. No differences were observed between CON, PFA, and RFT calves on body weight (BW) or average daily gain (ADG) until 49 d of age. From weaning (50 d) until 112 d, PFA calves had a greater BW and ADG than RFT and CON animals. Moreover, PFA calves had the highest intakes of starter, straw, calculated metabolizable energy, and crude protein after weaning. Overall, no differences were present in blood β-hydroxybutyrate and glucose concentrations between treatments; however, calves in the RFT treatment had a higher concentration of insulin-like growth factor-1. In experiment 2, 24 Holstein bull calves at 3 mo of age were assigned to 1 of 8 blocks based on arrival BW and age. Within each block, calves were randomly assigned to 1 of the 3 treatments previously described for experiment 1. Calves on the RFT treatment had the lowest total-tract apparent dry matter and fat digestibility, potentially explaining the differences in performance observed between PFA and RFT calves. Inclusion of the PFA pellet at 10% with a calf starter improved BW, solid feed, and energy intake after weaning. However, these benefits were conditioned by fat source and its digestibility.  相似文献   

12.
Six Holstein cows in early lactation were used in a double 3 x 3 Latin square design to determine the effects of feeding diets with pea silage, relative to barley silage, or alfalfa silage. Cows were fed rations formulated to contain 50:50 forage:concentrate ratio. Two ruminally fistulated cows were used in a randomized complete block design to determine ruminal nutrient degradability for pea silage relative to barley and alfalfa silages. Pea silage contained lower neutral detergent fiber (NDF), acid detergent fiber, and starch concentrations but higher crude protein than barley silage. Compared with alfalfa silage, pea silage had higher starch and NDF but lower crude protein content. Pea and alfalfa silage had similar effective ruminal degradability of dry matter, which was higher than that of barley silage. The rate of degradation and effective ruminal degradability of NDF was highest for alfalfa silage, intermediate for pea silage and lowest for barley silage. Results of the lactation trial showed that dry matter intake and milk yield were not affected by forage source. Milk composition was similar for cows fed pea or barley silage; however, cows fed pea silage produced milk with a higher fat and a lower protein percentage than those fed the alfalfa silage. Pea silage can replace barley or alfalfa silage as a forage source for dairy cows in early lactation.  相似文献   

13.
Four trials were conducted to compare the concentrations of cottonseed hulls (CSH) and chopped hay in textured starters on calf body weight gain, intake, and efficiency. Holstein bull calves (initially 3 and 4 d old in studies 1, 2, and 3, and 59 to 60 d old in study 4) were fed ad libitum starters (geometric mean particle size of approximately 2,000 22mim; equal at 18% crude protein as-fed; digestible energy concentration declined with increasing roughage). All calves were weaned at 31 to 32 d of age. Calves were housed in individual pens bedded with straw within an unheated, curtain-sided nursery for d 0 to 56 and then grouped in pens of 6 calves for d 56 to 84. Study 1 compared textured starters containing A) 0% or B) 5% CSH for the first 56 d. On d 56 (through d 84), calves fed diet A were switched to diet C, which contained 0% CSH and 5% chopped hay; calves fed diet B were switched to diet D, which contained 5% CSH and 5% hay. Study 2 compared textured starters fed from 0 to 84 d that contained A) 0% CSH and 0% chopped hay, B) 5% CSH, C) 10% CSH, or D) 5% chopped hay. Study 3 compared textured starters fed from 0 to 56 d that contained A) 0%, B) 2.5%, and C) 5% chopped hay. Study 4 compared textured starters fed from d 56 to 84 that contained A) 5% and B) 15% chopped hay. In study 1, calves fed the diet with 5% CSH consumed less starter and were less efficient from 28 to 56 d than calves fed 0% CSH. Calves fed the diet with 0% CSH tended to have a greater average daily gain (ADG) and empty body weight ADG (EBWADG) from 28 to 84 d than calves fed the starter with 5% CSH. In study 2, EBWADG declined linearly from 0 to 28 d, and both ADG and EBWADG decreased from 28 to 56 d as CSH percentage increased in the starter. Both ADG and EBWADG responded quadratically to CSH percentage in the starter from 56 to 84 d, with calves fed the starter containing 10% CSH having the slowest ADG and EBWADG. Calves between 56 and 84 d that were fed starters with 5% roughage appeared more efficient than calves fed starters with 0 or 10% roughage. In study 3, ADG, EBWADG, starter intake, and efficiency declined linearly as hay percentage increased in the starter from 28 to 56 d. In study 4, ADG, EBWADG, and starter intake were less for calves fed starters with 15 vs. 5% hay. In conclusion, adding low-energy fibrous feeds to starters with adequate coarseness (approximately 2,000 μm) reduced ADG in weaned calves less than 3 mo old bedded on straw.  相似文献   

14.
The present study was conducted to investigate the effects of crude protein (CP) content of starter feed and wheat straw (WS) processing on growth performance, digestibility, ruminal fermentation, and behavior of Holstein calves. Sixty calves (28 male and 32 female) were randomly assigned to 1 of 4 treatments in a randomized complete block design. Treatments in a 2 × 2 factorial arrangement were (1) lower-CP ground starter feed mixed with alkali-processed WS (LP-PWS), (2) lower-CP ground starter feed mixed with unprocessed WS (LP-WS), (3) higher-CP ground starter feed mixed with alkali-processed WS (HP-PWS), and (4) higher-CP ground starter feed mixed with unprocessed WS (HP-WS). Wheat straw was fed at 4.75% of dry matter (DM), and low-protein (LP) and high-protein (HP) starter feed contained 19.5 and 23.5% CP, respectively. The calves were weaned on d 60 and remained in the study until d 75. During the experiment, the calves received 4.2 kg of whole milk per day and had free access to fresh water and starter feed. The interaction between WS processing and protein content of starter tended to be significant for starter feed intake, average daily gain (ADG), and body weight (BW); calves fed HP-PWS tended to have greater ADG and final BW than other treatments. The results showed that feeding HP ground starter feed increased ADG and feed efficiency compared with LP groups during the preweaning and the overall periods. Moreover, weaning and final BW were higher in HP-fed calves than in LP-fed calves. Apparent digestibilities of acid detergent fiber (ADF), starch, and CP were greater in calves fed HP than in calves fed LP starter feed. The HP ground starter feed increased rumen propionate and ammonia concentrations. Wheat straw processing had no effect on intake and growth of calves but increased DM, ADF, and neutral detergent fiber digestibilities and decreased ruminal pH. Using processed wheat straw (PWS) mixed with starter feed tended to decrease rumination time and ruminal acetate concentration in calves. Final body barrel and withers height tended to be greater in calves fed PWS. Overall, the results indicated that HP content of ground starter feed (23.5%) could be recommended for Holstein calves. Furthermore, PWS inclusion in the ground starter diet increased fiber digestibility but had no effect on calf performance. Moreover, calves fed HP-PWS had greater ADG and final BW than other treatments.  相似文献   

15.
Four Holstein cows fitted with ruminal cannulas were used in a 4 × 4 Latin square design (28-d periods) with a 2 × 2 factorial arrangement of treatments to investigate the effects of addition of a specific mixture of essential oil compounds (MEO; 0 vs. 750 mg/d) and silage source [alfalfa silage (AS) vs. corn silage (CS)] on digestion, ruminal fermentation, rumen microbial populations, milk production, and milk composition. Total mixed rations containing either AS or CS as the sole forage source were balanced to be isocaloric and isonitrogenous. In general, no interactions between MEO addition and silage source were observed. Except for ruminal pH and milk lactose content, which were increased by MEO supplementation, no changes attributable to the administration of MEO were observed for feed intake, nutrient digestibility, end-products of ruminal fermentation, microbial counts, and milk performance. Dry matter intake and milk production were not affected by replacing AS with CS in the diet. However, cows fed CS-based diets produced milk with lower fat and higher protein and urea N concentrations than cows fed AS-based diets. Replacing AS with CS increased the concentration of NH3-N and reduced the acetate-to-propionate ratio in ruminal fluid. Total viable bacteria, cellulolytic bacteria, and protozoa were not influenced by MEO supplementation, but the total viable bacteria count was higher with CS- than with AS-based diets. The apparent digestibility of crude protein did not differ between the AS and CS treatments, but digestibilities of neutral detergent fiber and acid detergent fiber were lower when cows were fed CS-based diets than when they were fed AS-based diets. Duodenal bacterial N flow, estimated using urinary purine derivatives and the amount of N retained, increased in cows fed CS-based diets compared with those fed AS-based diets. Feeding cows AS increased the milk fat contents of cis-9, trans-11 18:2 (conjugated linoleic acid) and 18:3 (n-3 fatty acid) compared with feeding cows CS. Results from this study showed limited effects of MEO supplementation on nutrient utilization, ruminal fermentation, and milk performance when cows were fed diets containing either AS or CS as the sole forage source.  相似文献   

16.
Six multiparous Holstein cows (average 31 days in milk; 36.3 kg/d of milk) fitted with ruminal cannulas were used in a 6 x 6 Latin square with 21-d periods to investigate the effects of diets that varied in forage source and amount of supplemental tallow. Isonitrogenous diets in a 2 x 3 factorial arrangement were based on either high corn silage (40:10 corn silage to alfalfa silage, % of dry matter) or high alfalfa silage (10:40 corn silage to alfalfa silage, % of dry matter) and contained 0, 2, or 4% tallow. Intakes of dry matter and total fatty acids were lower when cows were fed the high corn silage diet. Tallow supplementation linearly decreased dry matter intake. Milk yield was unaffected by diet; yields of milk fat and 3.5% fat-corrected milk were higher for the high alfalfa silage diet but were unaffected by tallow. Milk fat percentage was higher for the high alfalfa silage and tended to decrease when tallow was added to the high corn silage diet. Contents of trans-C18:1 isomers in milk fat were increased by high corn silage and tallow, and tended to be increased more when tallow was fed in the high corn silage diet. Ruminal pH and acetate:propionate were lower when high corn silage was fed. Ruminal acetate:propionate decreased linearly as tallow increased; the molar proportion of acetate was decreased more when tallow was added to the high corn silage diet. Ruminal liquid dilution rates were higher for the alfalfa silage diet; ruminal volume and solid passage rates were similar among diets. Total tract apparent digestibilities of dry matter, organic matter, crude protein, starch, energy, and total fatty acids were unaffected by diet. Digestibilities of neutral detergent fiber, acid detergent fiber, hemicellulose, and cellulose were lower when high corn silage was fed. The high alfalfa silage diet increased intakes of metabolizable energy and N, and increased milk energy and productive N. Tallow decreased the amount of N absorbed but had few other effects on utilization of energy or N. Tallow linearly increased concentrations of nonesterified fatty acids and cholesterol in plasma; cholesterol was increased by high alfalfa silage. Overall, forage source had more pronounced effects on production and metabolism than did tallow supplementation. Few interactions between forage source and tallow supplementation were detected except that ruminal fermentation and milk fat content were affected more negatively when tallow was fed in the high corn silage diet.  相似文献   

17.
Nine multiparous (250 ± 6 d in milk) and 3 primiparous (204 ± 6 d in milk) Holstein cows were utilized in a 3 × 3 Latin square design to evaluate the lactation performance of cows fed a diet containing dried distillers grains plus solubles (DDGS) with either corn silage or alfalfa hay as forage. Cows were fed total mixed diets containing corn silage (CS), 50% corn silage and 50% alfalfa hay (CSAH), or alfalfa hay (AH) as the forage source. All diets had a 50:50 forage-to-concentrate ratio, contained 15% DDGS, and were formulated to be equal in metabolizable protein. Dry matter intake increased when cows were fed CSAH (24.9 kg/d) compared with CS (21.9 kg/d) and AH (20.9 kg/d). Yields of milk (26.5, 28.4, 29.0 kg/d for CS, CSAH, and AH, respectively) increased linearly as proportions of alfalfa fed increased but 4% fat-corrected milk and energy-corrected milk were not affected by treatment. Feed efficiency (1.28, 1.23, and 1.45 kg of energy-corrected milk/kg of intake) improved when AH was fed compared with CS or CSAH. Milk fat concentration (3.67, 3.55, and 3.49%) decreased linearly when alfalfa replaced corn silage, but was observed only in primiparous cows, not multiparous cows. Milk protein concentration (3.32, 3.29, and 3.29%) was not affected by diet although yield (0.90, 0.96, and 0.98 kg/d) tended to increase linearly when alfalfa was added to the diet. This may have been due to an increase in essential amino acid (AA) availability and uptake by the mammary gland or to greater crude protein intake in cows fed AH. In addition, replacing corn silage with alfalfa increased the uptake of Lys by the mammary gland. Methionine was the first-limiting AA based on the transfer efficiency of AA in arterial plasma to milk protein. However, Lys was the first-limiting AA in CS and CSAH and Met was first limiting in AH for mammary gland extraction efficiency of AA from plasma. In conclusion, replacing corn silage with alfalfa hay in diets containing 15% DDGS increased milk yield and tended to increase milk protein yield linearly in cows during late lactation. Feeding alfalfa hay as the sole forage source improved feed efficiency compared with diets containing corn silage.  相似文献   

18.
Two studies were conducted to assess the effect of protein source and microencapsulated sodium butyrate (MSB) inclusion in pelleted starter mixtures on growth performance, gain to feed (G:F) ratio, nutrient digestibility, and selected blood metabolites in calves. In study 1, 28 Holstein bull calves (8.7 ± 0.8 d of age and 43.0 ± 4.4 kg; mean ± SD) were allocated to 1 of 4 treatments in a 2 × 2 factorial arrangement and fed a pelleted starter mixture containing canola meal (CM, 35% as fed) or soybean meal (SM, 24% as fed) as the main source of protein, with or without supplemental MSB (0.3% as fed). Starter mixtures were formulated to be similar for crude protein, Lys, and Met, and were fed ad libitum. Calves were weaned after 42 d of milk replacer feeding (51.7 ± 0.8 d of age) and observed for another 21 d. Furthermore, selected blood metabolites were measured on d 21, 42, and 63 of the study, and nutrient digestibility was measured after weaning. In study 2, 60 Holstein heifer calves (9.1 ± 0.8 d of age and 43.2 ± 4.2 kg) were assigned to the same treatments as in study 1. The calves were weaned after 49 d of milk replacer feeding (59.1 ± 0.8 d of age) and observed for an additional 14 d. Milk replacer and starter mixture intake and fecal score were recorded daily, whereas body weight (BW) was recorded weekly. In study 1, calves fed starter mixtures containing CM had or tended to have lesser preweaning starter intake, weaning average daily gain (ADG), weaning and overall G:F ratio, and postweaning total-tract dry matter digestibility, as opposed to those fed starter mixtures with SM. However, these differences did not affect overall starter intake, overall ADG, or final BW. Supplementation with MSB only tended to increase the preweaning starter mixture intake. In study 2, heifer calves that were fed starter mixtures with CM had greater cumulative starter intake after weaning, but the protein source in the starter mixture had no effect on ADG, BW, or G:F ratio. Inclusion of MSB in starter mixtures for calves tended to decrease postweaning starter mixture intake. In conclusion, use of CM or SM as the main source of protein in starter mixture resulted in similar growth performance of bull and heifer calves; however, CM use in starter mixtures reduced starter intake, ADG, and G:F ratio at least at some points of rearing. Supplementation of MSB had minor effects on the growth performance of calves.  相似文献   

19.
20.
We theorized that adding corn silage to a total mixed ration with alfalfa hay as the sole dietary forage would improve nutrient intake and chewing activity and thereby improve rumen fermentation and milk production. The objective of this research was to determine the effects of partial replacement of short alfalfa [physically effective (pe) neutral detergent fiber (NDF) >1.18 mm (peNDF>1.18) = 33.2%] with corn silage (CS, peNDF>1.18 = 51.9%) in yellow grease-supplemented total mixed rations on feed intake, chewing behavior, rumen fermentation, and lactation performance by dairy cows. Four multiparous (138 ± 3 d in milk) and 4 primiparous (115 ± 10 d in milk) Holstein cows were used in a 4 × 4 Latin square design experiment with four 21-d periods. Each period had 14 d of adaptation and 7 d of sampling, and parity was the square. Treatments were diets [dry matter (DM) basis] with 1) 40% alfalfa hay (ALF), 2) 24% alfalfa hay + 16% CS (CS40), 3) 20% alfalfa hay + 20% CS (CS50), and 4) 16% alfalfa hay + 24% CS (CS60). Diets had a forage-to-concentrate ratio of 40:60 on a DM basis. Cows had greater intake of DM and thus greater intakes of net energy for lactation, NDF, and peNDF when CS partially replaced alfalfa hay. Replacing alfalfa hay with CS increased daily eating and chewing times in all cows, and increased rumen pH at 4 h postfeeding in multiparous cows. Apparent total-tract digestibility coefficients for crude protein (CP) and NDF were not different among cows fed ALF, CS40, and CS50, but were lower for CS60 than for ALF. Energy-corrected milk yield was greater for CS40 and CS60 than for ALF. Milk protein yield was increased when CS replaced 40, 50, and 60% of alfalfa hay. Milk lactose was greater only for CS60, but milk lactose yield was greater for CS50 and CS60 than for ALF. Milk percentage and yield of fat did not differ among treatments. Therefore, CS partially replacing short alfalfa hay increased DM intake, consequently increased net energy for lactation and physically effective fiber intakes, and thus, improved milk and milk protein and lactose yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号