首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Use of high‐intensity ultrasound to modify certain functional properties of whey proteins is an alternative to traditional method in food industry. Whey protein isolate (WPI) solutions were treated with an ultrasound probe (20 kHz) at different intensities (20% or 30% amplitude) and durations (10 or 20 min). Results showed that ultrasound treatment changed physical and several functional properties of whey proteins including decreased particle size (from 190.4 nm to 138.0 nm), increased surface hydrophobicity (from 5.13 × 105 to 5.77 × 105), free sulphydryl groups (from 52.64 μmol SH g?1 to 53.64–58.77 μmol SH g?1), solubility (from 74.95% to 89.70%), emulsion activity index (from 3.18 m2 g?1 to 3.59–5.32 m2 g?1) and emulsion stability index (from 62.26 min to 71.44–104.83 min), and changed viscosity (from 5.51 mPa.s to 4.81–5.64 mPa.s). Therefore, we conclude that high‐intensity ultrasound can be potentially applied to whey proteins to improve its specific functions during food processing.  相似文献   

2.
3.
Two batches of native whey proteins (WP) were subjected to microfluidization or heat denaturation accompanied by microfluidization, followed by spray drying. Powders were assessed for their solubility, heat stability, coagulation time, and emulsifying and foaming properties. Effects of denaturation and shearing were examined by particle size analysis, differential scanning calorimetry, reducing and nonreducing sodium dodecyl sulfate-PAGE, and size exclusion-HPLC. Heat treatment significantly decreased solubility, whereas the number of microfluidization passes markedly improved solubility. The combined effect of heat and pressure significantly increased heat coagulation time. Emulsifying activity index substantially increased upon heat denaturation and was further enhanced by microfluidization. Emulsion stability appeared unaffected by the combined treatment, but the concentration of adsorbed protein on fat droplets was significantly increased. Foaming properties were diminished by heating. Particle size distribution patterns, sodium dodecyl sulfate-PAGE, and size exclusion-HPLC revealed disappearance of major WP and creation of relatively higher, as well as smaller, molecular weight aggregates as a result of the 2 treatments. The use of heat and microfluidization in combination could be used to stabilize WP against heat by producing microparticulated species that have different surface and colloidal properties compared with native WP. These results have implications for the use of WP as an additive in heat-processed foods.  相似文献   

4.
To elucidate the effects of salts on the properties of citric acid-induced tofu gel, gelation was induced in the presence of KCl, CaCl2 or CaSO4, and gypsum tofu was used as a reference. The textural properties, water-holding capacity (WHC), rheological behaviour, aggregate size distribution and microstructure of the tofu were evaluated. The results indicated that the addition of 0.10 g/100 mL KCl,0.05 g/100 mL CaCl2 and 0.15 g/100 mL CaSO4 yields more elastic tofu with high water-holding capacity. The WHC of tofu induced in the presence of salts was similar to that of gypsum tofu, while the tofu was firmer and less elastic than gypsum tofu. The maximum elasticity of citric acid-induced tofu was obtained with addition of 0.15 g/100 mL CaSO4. These results are useful to understand the effects of different salts on soymilk gelation and provide a theoretical base for the quality improvement of citric acid-induced tofu.  相似文献   

5.
The functionality of whey proteins can be modified by many approaches; for example, via complexation with carbohydrates, enzymatic cross-linking, or hydrolysis, and the objective of this work was to research the effects of supercritical carbon dioxide (scCO2) treatments on the functionalities of commercial whey protein products including whey protein isolates (WPI) and whey protein concentrates (WPC). The WPI and WPC powders and a 10% (wt/vol) WPI solution were treated with scCO2. The WPI solution was treated at 40°C and 10 MPa for 1 h, whereas WPI and WPC powders were treated with scCO2 at 65°C and 10 or 30 MPa for 1 h. Dynamic rheological tests were used to characterize gelation properties before and after processing. Compared with the unprocessed samples and samples processed with N2 under similar conditions, scCO2-treated WPI, whether dispersed in water or in the powder form during treatments, formed a gel with increased strength. The improvement in gelling properties was more significant for the scCO2-treated WPC. In addition, the scCO2-processed WPI and WPC powders appeared to be fine and free-flowing, in contrast to the clumps in the unprocessed samples. Proximate compositional and surface hydrophobicity analyses indicated that both compositional and structural changes may have contributed to enhanced whey protein functionalities. The results suggest that functionalities of whey proteins can be improved by scCO2 treatment to produce novel ingredients.  相似文献   

6.
A solution of heat‐denatured whey proteins was prepared by heating 100 g kg−1 whey protein isolate (WPI) at pH 7.0 to 75 °C for 15 min in the absence of salt. Heat treatment caused the globular protein molecules to unfold, but electrostatic repulsion opposed strong protein–protein aggregation and so prevented gel formation. When the heat‐denatured whey protein solution was cooled to room temperature and mixed with 15 mM CaCl2, it formed a gel. We investigated the influence of the presence of sucrose in the protein solutions prior to CaCl2 addition on the gelation rate. At relatively low concentrations (0–100 g kg−1), sucrose decreased the gelation rate, presumably because sucrose increased the aqueous phase viscosity. At higher concentrations (100–300 g kg−1), sucrose decreased the gelation rate, probably because sugar competes for the water of hydration and therefore increases the attraction between proteins. These data have important implications for the application of cold‐setting WPI ingredients in sweetened food products such as desserts. © 2000 Society of Chemical Industry  相似文献   

7.
This study examined how and to what extent the degree of denaturation affected the technological-functional properties of whey protein isolate (WPI)-based coatings. It was observed that denaturation affected the material properties of WPI-coated films significantly. Surface energy decreased by approximately 20% compared with native coatings. Because the surface energy of a coating should be lower than that of the substrate, this might result in enhanced wettability characteristics between WPI-based solution and substrate surface. Water vapor barrier properties increased by about 35% and oxygen barrier properties increased by approximately 33%. However, significant differences were mainly observed between coatings made of fully native WPI and ones with a degree of denaturation of 25%. Higher degrees of denaturation did not lead to further improvement of material properties. This observation offers cost-saving potential: a major share of denatured whey proteins may be replaced by fully native ones that are not exposed to energy-intensive heat treatment. Furthermore, native WPI solutions can be produced with higher dry matter content without gelatinizing. Hence, less moisture has to be removed through drying, resulting in reduced energy consumption.  相似文献   

8.
The objective of this study was to investigate the rheological, thermal and microstructural properties of whey protein isolate (WPI)‐hydroxypropylated cassava starch (HPCS) gels and WPI‐cross‐linked cassava starch (CLCS) gels at different pH values (5.75, 7.00 and 9.00). The rheological results showed that the WPI‐modified starch gels had greater storage modulus (G?) values than the WPI‐native cassava starch gels at pH 5.75 and 7.00. Differential scanning calorimetry curves suggested that the phase transition order of the WPI and modified starch changed as the pH increased. Scanning electron microscopy images showed that the addition of HPCS and CLCS contributed to the formation of a compact microstructure at pH 5.75 and 7.00. A comprehensive analysis showed that the gelling properties of the WPI‐modified starch were affected by the difference between the WPI denaturation temperature and modified starch gelatinisation temperature and by the granular properties of the modified starch during gelatinisation. These results may contribute to the application of WPI‐modified starch mixtures in food preparation.  相似文献   

9.
Thermogravimetry/derivative thermogravimetry (TG/DTG), rheometry and differential scanning calorimetry (DSC) were used to study the thermal stability and determine the transition temperatures of the sodium and potassium salts of high‐acyl gellan (HAG) in the presence of 0–100 mm NaCl and KCl, respectively. TG/DTG revealed the potassium gellan (KHAG) gels to be more stable than those of sodium gellan (NaHAG), regardless of external cation concentration. Rheometry and DSC showed the melting (Tm) and gelling (Tg) temperatures to increase with cation concentration. The DSC peak temperatures showed thermal hysteresis contrary to rheometry. In most cases, DSC revealed KHAG to exhibit higher Tm and Tg than NaHAG. Consequently, thermal characteristics of NaHAG and KHAG gels depend on the size of the external cation and its ability to coordinate water molecules. Cation salts of HAG exhibit significantly lower transition temperatures than the commercial preparation from which they were produced.  相似文献   

10.
程宇  程珂  李欢  施海月  王丹 《食品工业科技》2015,36(10):130-134
考察了p H(3、7)、氯化钠浓度(50、200mmol/L)以及热处理(90℃、30min)对不同乳化剂(乳清分离蛋白、Tween20、Tween20+马铃薯蛋白水解物)制备O/W乳状液分层稳定性的影响。并以凝胶持水性和凝胶强度为指标,考察了p H和氯化钠浓度对上述不同界面组成的乳化颗粒填充乳清蛋白热诱导凝胶性质的影响。结果表明,以乳状液为溶剂制备的凝胶持水性与凝胶强度高于以水为溶剂制备的凝胶。加入一定量的氯化钠有助于乳状液凝胶持水性与凝胶强度的增加。研究表明,p H和盐浓度对乳状液填充凝胶强度均有影响,乳状液性质对乳状液填充凝胶强度和持水性有一定影响。   相似文献   

11.
Fluorescence spectroscopy was used to investigate the interaction between resveratrol and whey proteins. The whey proteins examined were lactoferrin, holo‐lactoferrin, apo‐lactoferrin, whey protein isolate (WPI) and the β‐lactoglobulin‐ and α‐lactalbumin‐rich fractions of WPI. Both an analytical‐grade and food‐grade resveratrol were examined. In all the systems studied, it was found that resveratrol interacted with the whey proteins to form a 1:1 complex. The binding constant, Ks, for the protein–resveratrol complex for all the proteins examined varied from 1.7 × 104 to 1.2 × 105 m ?1. Furthermore, the interaction between the whey proteins and resveratrol did not affect the secondary structure of the proteins.  相似文献   

12.
乳清蛋白对脱脂发酵乳的流变特性及贮存稳定性的影响   总被引:4,自引:0,他引:4  
研究了乳清蛋白对脱脂发酵乳流变学特性及贮存稳定性的影响,在VAYC-370为发酵剂的情况下,分别以质量分数为10%,20%,30%和40%的乳清蛋白替代脱脂奶粉进行发酵,结果表明,乳清蛋白会降低发酵乳凝胶的硬度、提高发酵乳的内聚性,同时发现乳清蛋白可提高搅拌型发酵乳的贮存稳定性.表明发酵乳凝胶的内聚性与贮存稳定性呈正相关关系。  相似文献   

13.
不同酶切方式对乳清蛋白疏水性和乳化性的影响   总被引:1,自引:0,他引:1  
采用不同的蛋白酶对乳清蛋白进行水解,考察了肽键断裂方式对乳清蛋白肽疏水性和乳化性的影响,以及乳清蛋白不同酶解产物的疏水性和乳化性的关系。结果表明:不同蛋白酶作用于乳清蛋白得到的水解产物疏水性不同,6种蛋白酶解液的疏水性均随水解度的增大而降低,其中以胰凝乳蛋白酶酶解液的疏水性下降的最慢。研究还发现,乳化性随着水解度增加而先升高后下降,以双酶复合酶解液最差。不同蛋白酶水解液的乳化性指数随疏水性指数的降低而升高,乳化性指数与疏水性氨基酸质量分数成正相关。  相似文献   

14.
王岩东  郭顺堂 《食品科技》2007,32(10):60-63
研究了大豆乳清蛋白粉对面粉的增白效果,并进一步研究了在增白过程中起主要作用的脂肪氧化酶活性的变化规律。通过考察不同添加量及温度对面粉增白效果的影响,得出大豆乳清蛋白在添加量为2%、温度为30℃条件下增白效果最好。在此基础上采用Brabender粉质仪测定了添加大豆乳清蛋白粉后面团的流变学特性。粉质实验表明面粉的吸水率增大,面团的形成时间、稳定时间、断裂时间延长,评价值提高,公差指数及面团弱化值减小。  相似文献   

15.
Imitation cheese (48%, 50% and 52% moisture) was manufactured using a Farinograph. The standard emulsifying salts (ES) concentration was 1.4%, giving a casein:ES ratio of 19:12. The effect of ES reduction on cheese manufacture and functionality, assessed by texture profile analysis, heat-induced flowability and dynamic rheology, was studied. Microstructure was investigated by light and cryo-scanning electron microscopy. Reducing ES increased processing time and hardness and decreased flowability and fat globule diameter. In comparison to standard ES, a reduction of up to 20% produced cheeses in reasonable processing times with slightly altered functionality. On further ES reduction, processing times greatly increased giving much harder and less meltable cheeses. Reducing ES by 40% increased processing times ∼3-fold, halved fat globule diameter and flowability and doubled hardness, compared to standard cheeses. At ES reduction above 40% the product obtained, after prolonged processing time, bore little resemblance to cheese.  相似文献   

16.
Whey protein beverages have been shown to be astringent at low pH. In the present study, the interactions between model whey proteins (β-lactoglobulin and lactoferrin) and human saliva in the pH range from 7 to 2 were investigated using particle size, turbidity, and ζ-potential measurements and sodium dodecyl sulfate-PAGE. The correlation between the sensory results of astringency and the physicochemical data was discussed. Strong interactions between β-lactoglobulin and salivary proteins led to an increase in the particle size and turbidity of mixtures of both unheated and heated β-lactoglobulin and human saliva at pH ∼3.4. However, the large particle size and high turbidity that occurred at pH 2.0 were the result of aggregation of human salivary proteins. The intense astringency in whey protein beverages may result from these increases in particle size and turbidity at these pH values and from the aggregation and precipitation of human salivary proteins alone at pH <3.0. The involvement of salivary proteins in the interaction is a key factor in the perception of astringency in whey protein beverages. At any pH, the increases in particle size and turbidity were much smaller in mixtures of lactoferrin and saliva, which suggests that aggregation and precipitation may not be the only mechanism linked to the perception of astringency in whey protein.  相似文献   

17.
Whey-based nutritional beverages are often fortified with calcium (Ca) in order to deliver the recommended intake of Ca. However, technical and product quality challenges are often experienced with Ca fortification of whey protein-based nutritional solutions, such as poor heat stability, high viscosity, colloidal instability, and impaired heat transfer. Understanding of the relationships and interactions between whey proteins and Ca relative to liquid process (e.g., ready to feed products, feed material prior to drying) is essential to designing and formulating nutritional whey-based products with desired physicochemical and colloidal stability properties. This article reviews the interactions between whey proteins and Ca salts used in the formulation of nutritional whey-based products as well as major processing implications associated with Ca fortification of whey-based solutions.  相似文献   

18.
The effect of preheat temperature (63 or 77 °C for 30 s; final heat 120 °C for 30 s) and casein to whey protein ratio on the physical characteristics of 3.3%, w/w, dairy protein beverages was investigated. Dispersions preheated at 77 °C had lower viscosity than dispersions preheated at 63 °C. Casein‐containing dispersions had significantly lower levels of α‐lactalbumin denaturation than whey protein‐only dispersions. A higher proportion of casein improved the thermal stability of protein dispersions. Overall, alteration of preheat temperature and casein to whey protein ratio can influence dairy beverage quality, with increasing levels of casein reducing physical changes due to heat treatment.  相似文献   

19.
In this work the stability and the rheological behaviour of salad dressing containing 'Minas Frescal' whey cheese was studied. The salad dressing was stabilised by xanthan gum (XG), propylene glycol alginate (PGA) and carboxymethylcellulose (CMC). All samples were stable for a period of 4 months. The rheological model of Ostwald-de-Waelle (Power-Law) was used in order to fit the data and to obtain the rheological parameters of flow behaviour index ( n ), consistency coefficient and apparent viscosity (ηap). All formulations showed a pseudoplastic behaviour and the PGA contributed to increase the values of flow behaviour index. Consistency coefficient was similarly affected by XG and PGA fractions. Apparent viscosity was highly influenced by the hydrocolloid CMC, with higher values of apparent viscosity in the proportion of 0.25/0.25/0.5% (PGA/XG/CMC). Hydrocolloid association (ternary mixtures) was statistically significant, resulting in an increase of K and ηap parameters. The results show that salad dressing with whey as aqueous phase and stabilised by a ternary combination of XG, PGA and CMC can be a technological alternative to the food industry.  相似文献   

20.
《Journal of dairy science》2021,104(10):10500-10512
In the manufacture of cream cheese, sweet cream and milk are blended to prepare the cream cheese mix, although other ingredients such as condensed skim milk and skim milk powder may also be included. Whey cream (WC) is an underutilized fat source, which has smaller fat droplets and slightly different chemical composition than sweet cream. This study investigated the rheological and textural properties of cream cheeses manufactured by substituting sweet cream with various levels of WC. Three different cream cheese mixes were prepared: control mix (CC; 0% WC), cream cheese mixes containing 25% WC (25WC; i.e., 75% sweet cream), and cream cheese mixes with 75% WC (75WC; i.e., 25% sweet cream). The CC, 25WC, and 75WC mixes were then used to manufacture cream cheeses. We also studied the effect of WC on the initial step in cream cheese manufacture (i.e., the acid gelation process monitored using dynamic small amplitude rheology). Acid gels were also prepared with added denatured whey proteins or membrane proteins/phospholipids (PL) to evaluate how these components affected gel properties. The rheological, textural, and sensory properties of cream cheeses were also measured. The WC samples had significantly higher levels of PL and insoluble protein compared with sweet cream. An increase in the level of WC reduced the rate of acid gel development, similar to the effect of whey phospholipid concentrate added to mixes. In cream cheese, an increase in the level of added WC resulted in significantly lower storage modulus values at temperatures <20°C. Texture results, obtained from instrumental and sensory analyses, showed that high level of WC resulted in significantly lower firmness or hardness values and higher stickiness compared with cream cheeses made with 25WC or CC cream cheeses. The softer, less elastic gels or cheeses resulting from the use of high levels of WC are likely due to the presence of components such as PL and proteins from the native milk fat globule membrane. The use of low levels of WC in cream cheese did not alter the texture, whereas high levels of WC could be used if manufacturers want to produce more spreadable products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号