首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
《Journal of dairy science》2021,104(10):10640-10653
This study evaluated the role of protein concentration and milk protein ingredient [serum protein isolate (SPI), micellar casein concentrate (MCC), or milk protein concentrate (MPC)] on sensory properties of vanilla ready-to-drink (RTD) protein beverages. The RTD beverages were manufactured from 5 different liquid milk protein blends: 100% MCC, 100% MPC, 18:82 SPI:MCC, 50:50 SPI:MCC, and 50:50 SPI:MPC, at 2 different protein concentrations: 6.3% and 10.5% (wt/wt) protein (15 or 25 g of protein per 237 mL) with 0.5% (wt/wt) fat and 0.7% (wt/wt) lactose. Dipotassium phosphate, carrageenan, cellulose gum, sucralose, and vanilla flavor were included. Blended beverages were preheated to 60°C, homogenized (20.7 MPa), and cooled to 8°C. The beverages were then preheated to 90°C and ultrapasteurized (141°C, 3 s) by direct steam injection followed by vacuum cooling to 86°C and homogenized again (17.2 MPa first stage, 3.5 MPa second stage). Beverages were cooled to 8°C, filled into sanitized bottles, and stored at 4°C. Initial testing of RTD beverages included proximate analyses and aerobic plate count and coliform count. Volatile sulfur compounds and sensory properties were evaluated through 8-wk storage at 4°C. Astringency and sensory viscosity were higher and vanillin flavor was lower in beverages containing 10.5% protein compared with 6.3% protein, and sulfur/eggy flavor, astringency, and viscosity were higher, and sweet aromatic/vanillin flavor was lower in beverages with higher serum protein as a percentage of true protein within each protein content. Volatile compound analysis of headspace vanillin and sulfur compounds was consistent with sensory results: beverages with 50% serum protein as a percentage of true protein and 10.5% protein had the highest concentrations of sulfur volatiles and lower vanillin compared with other beverages. Sulfur volatiles and vanillin, as well as sulfur/eggy and sweet aromatic/vanillin flavors, decreased in all beverages with storage time. These results will enable manufacturers to select or optimize protein blends to better formulate RTD beverages to provide consumers with a protein beverage with high protein content and desired flavor and functional properties.  相似文献   

2.
Micellar casein concentrate (MCC) is a novel ingredient with high casein content. Over the past decade, MCC has emerged as one of the most promising dairy ingredients having applications in beverages, yogurt, cheese, and process cheese products. Industrially, MCC is manufactured by microfiltration (MF) of skim milk and is commercially available as a liquid, concentrated, or dried containing ≥9, ≥22, and ≥80% total protein, respectively. As an ingredient, MCC not only imparts a bland flavor but also offers unique functionalities such as foaming, emulsifying, wetting, dispersibility, heat stability, and water-binding ability. The high protein content of MCC represents a valuable source of fortification in a number of food formulations. For the last 20 years, MCC is utilized in many applications due to the unique physiochemical and functional characteristics. It also has promising applications to eliminate the cost of drying by producing concentrated MCC. This work aims at providing a succinct overview of the historical progress of the MCC, a review on the manufacturing methods, a discussion of MCC properties, varieties, and applications.  相似文献   

3.
The objective of this work was to develop and optimize an alternative make process for Greek-style yogurt (GSY), in which the desired level of protein was reached by fortification with micellar casein concentrate (MCC) obtained from milk by microfiltration. Two MCC preparations with 58 and 88% total protein (MCC-58 and MCC-88) were used to fortify yogurt milk to 9.80% (wt/wt) protein. Strained GSY of similar protein content was used as the control. Yogurt milk bases were inoculated with 0.02% (wt/wt) or 0.04% (wt/wt) direct vat set starter culture and fermented until pH 4.5. The acidification rate was faster for the MCC-fortified GSY than for the control, regardless of the inoculation level, which was attributed to the higher nonprotein nitrogen content in the MCC-fortified milk. Steady shear rate rheological analysis indicated a shear-thinning behavior for all GSY samples, which fitted well with the power law model. Dynamic rheological analysis at 5°C showed a weak frequency dependency of the elastic modulus (G′) and viscous modulus (G″) for all GSY samples, with G′ > G″, indicating a weak gel structure. Differences in the magnitude of viscoelastic parameters between the 2 types of GSY were found, with G′ of MCC-fortified GSY < G′ of control, indicating a different extent ofprotein interactionsin the 2 types of yogurt. Differences were also noticed in water-holding capacity, which was lower for the MCC-fortified GSY compared with the control, attributed to lower serum protein content in the former. Despite some differences in the physicochemical characteristics of the final product compared with GSY manufactured by straining, the alternative process developed here is a feasible alternative to the traditional GSY make process, with environmental and possibly financial benefits to the dairy industry.  相似文献   

4.
High protein levels in yogurt, as well as the presence of denatured whey proteins in the milk, lead to the development of firm gels that can make it difficult to formulate a fluid beverage. We wanted to prepare high-protein yogurts and explore the effects of using micellar casein isolate (MCI), which was significantly depleted in whey protein by microfiltration. Little is known about the use of whey protein-depleted milk protein powders for high-protein yogurt products. Microfiltration also depletes soluble ions, in addition to whey proteins, and so alterations to the ionic strength of rehydrated MCI dispersions were also explored, to understand their effects on a high-protein yogurt gel system. Yogurts were prepared at 8% protein (wt/wt) from MCI or nonfat dry milk (NDM). The NDM was dispersed in water, and MCI powders were dispersed in water (with either low levels of added lactose to allow fermentation to achieve the target pH, or a high level to match the lactose content of the NDM sample) or in ultrafiltered (UF) milk permeate to align its ionic strength with that of the NDM dispersion. Dispersions were then heated at 85°C for 30 min while stirring, cooled to 40°C in an ice bath, and fermented with yogurt cultures to a final pH of 4.3. The stiffness of set-style yogurt gels, as determined by the storage modulus, was lowest in whey protein-depleted milk (i.e., MCI) prepared with a high ionic strength (UF permeate). Confocal laser scanning microscopy and permeability measurements revealed no large differences in the gel microstructure of MCI samples prepared in various dispersants. Stirred yogurt made from MCI that was prepared with low ionic strength showed slow rates of elastic bond reformation after stirring, as well as slower increases in cluster particle size throughout the ambient storage period. Both the presence of denatured whey proteins and the ionic strength of milk dispersions significantly affected the properties of set and stirred-style yogurt gels. Results from this study showed that the ionic strength of the heated milk dispersion before fermentation had a large influence on the gelation pH and strength of acid milk gels, but only when prepared at high (8%) protein levels. Results also showed that depleting milk of whey proteins before fermentation led to the development of weak yogurt gels, which were slow to rebody and may be better suited for preparing cultured milk beverages where low viscosities are desirable.  相似文献   

5.
Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding αS1- and αS2-casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels.  相似文献   

6.
Our goal was to determine the effect of systematically controlled variation in milk fat, true protein, casein, and serum protein concentrations on the sensory color, flavor and texture properties, instrumental color and viscosity, and milk fat globule size distribution of milk-based beverages. Beverage formulations were based on a complete balanced 3-factor (fat, true protein, and casein as a percentage of true protein) design with 3 fat levels (0.2, 1.0, and 2.0%), 4 true protein (TP) levels (3.00, 3.67, 4.34, and 5.00%) within each fat level, and 5 casein as a percentage of true protein (CN%TP) levels (5, 25, 50, 75, and 80%) within each protein level (for a total of 60 formulations within each of 2 replicates). Instrumental measures of Hunter L and a values and Commission Internationale de l'Éclairage (CIE) b* values, instrumental viscosity, particle size, flavor, sensory texture and sensory appearance evaluations were done on each pasteurized/homogenized beverage formulation. Within each of the 3 fat levels, higher serum protein concentration drove higher aroma intensity, sweet aromatic, cooked/sulfur, cardboard/doughy flavors, and sensory yellowness scores, whereas higher casein concentration drove higher instrumental viscosity in milk protein beverages. Increasing serum protein concentration increased yellowness, sweet aromatic, aroma intensity, cooked/sulfur, and cardboard/doughy flavors across all fat levels and also had the largest effect on L, a, and b* values, sensory whiteness, and opacity within each fat level. Increases in true protein increased throat cling and astringency intensities. Increases in fat concentration were correlated with higher L, a, and b* values, larger particle size, and increased sensory whiteness, mouth coating, cooked/milky, and milkfat flavors. Multiple linear regression of L, a, and b* values produced better predictions of sensory whiteness and yellowness of pasteurized milk protein beverages than simple linear regression of L or b* values, respectively. Formulating milk protein beverages to a higher true protein level increased astringency regardless of fat level. When formulating milk protein beverages, a product developer has a wide range of milk-based protein ingredient choices that differ in price and change price relationship across time. Understanding the expected relative effect of different milk protein ingredients on the textural and flavor characteristics of milk-based beverages could be used to help guide product reformulation decisions and ingredient choices to achieve a specific sensory profile while controlling total beverage ingredient cost.  相似文献   

7.
8.
Milk, a rich source of nutrients, can be fractionated into a wide range of components for use in foods and beverages. With advancements in filtration technologies, micellar caseins and milk-derived whey proteins are now produced from skim milk using microfiltration. Microfiltered ingredients offer unique functional and nutritional benefits that can be exploited in new product development. Microfiltration offers promise in cheesemaking, where microfiltered milk can be used for protein standardization to improve the yield and consistency of cheese and help with operation throughputs. Micellar casein concentrates and milk whey proteins could offer unique functional and flavor properties in various food applications. Consumer desires for safe, nutritious, and clean-label foods could be potential growth opportunities for these new ingredients. The application of micellar casein concentrates in protein standardization could offer a window of opportunity to US cheese makers by improving yields and throughputs in manufacturing plants.  相似文献   

9.
The recovery of species-related conjugated sheep-like flavored alkylphenols from Manchego-type cheese whey by ultrafiltration was investigated. Concentrations of conjugated alkylphenols were similar in the various fractions of whey permeate collected during ultrafiltration, and this was interpreted as a reflection of their high water solubility. About 49 and 62% of conjugated 3- and 4-ethylphenols and p- and m-cresols in sheep's milk cheese whey, respectively, were recovered in the permeate after ultrafiltration with a volume concentration factor of 5.4. Cheese whey retentate correspondingly contained 38 and 28% of conjugated 3- and 4-ethylphenols and p- and m-cresols from the original whey, respectively. Permeate fractions from sheep's milk cheese whey were combined, concentrated by vacuum evaporation, and lactose was partially removed by crystallization and filtration to obtain an aqueous sheep-like flavor precursor concentrate.  相似文献   

10.
《Journal of dairy science》2023,106(1):117-131
Process cheese products (PCP) are dairy foods prepared by blending dairy ingredients (such as natural cheese, protein concentrates, butter, nonfat dry milk, whey powder, and permeate) with nondairy ingredients [such as sodium chloride, water, emulsifying salts (ES), color, and flavors] and then heating the mixture to obtain a homogeneous product with an extended shelf life. The ES, such as sodium citrate and disodium phosphate, are critical for the unique microstructure and functional properties of PCP because they improve the emulsification characteristics of casein by displacing the calcium phosphate complexes that are present in the insoluble calcium-paracaseinate-phosphate network in natural cheese. The objectives of this study were to determine the optimum protein content (3, 6, and 9% protein) in micellar casein concentrate (MCC) to produce acid curd and to manufacture PCP using a combination of acid curd cheese and MCC that would provide the desired improvement in the emulsification capacity of caseins without the use of ES. To produce acid curd, MCC was acidified using lactic acid to get a pH of 4.6. In the experimental formulation, the acid curd was blended with MCC to have a 2:1 ratio of protein from acid curd relative to MCC. The PCP was manufactured by blending all ingredients in a KitchenAid blender (Professional 5 Plus, KitchenAid) to produce a homogeneous paste. A 25-g sample of the paste was cooked in the rapid visco analyzer (RVA) for 3 min at 95°C at 1,000 rpm stirring speed during the first 2 min and 160 rpm for the last min. The cooked PCP was then transferred into molds and refrigerated until further analysis. This trial was repeated 3 times using different batches of acid curd. MCC with 9% protein resulted in acid curd with more adjusted yield. The end apparent viscosity (402.0–483.0 cP), hardness (354.0–384.0 g), melting temperature (48.0–51.0°C), and melting diameter (30.0–31.4 mm) of PCP made from different acid curds were slightly different from the characteristics of typical PCP produced with conventional ingredients and ES (576.6 cP end apparent viscosity, 119.0 g hardness, 59.8°C melting temperature, and 41.2 mm melting diameter) due to the differences in pH of final PCP (5.8 in ES PCP compared with 5.4 in no ES PCP). We concluded that acid curd can be produced from MCC with different protein content. Also, we found that PCP can be made with no ES when the formulation uses a 2:1 ratio of acid curd relative to MCC (on a protein basis).  相似文献   

11.
《Journal of dairy science》2021,104(12):12263-12273
Our objective was to determine the effects of temperature and protein concentration on viscosity increase and gelation of liquid micellar casein concentrate (MCC) at protein concentrations from 6 to 20% during refrigerated storage. Skim milk (∼350 kg) was pasteurized (72°C for 16 s) and filtered through a ceramic microfiltration system to make MCC and replicated 3 times. The liquid MCC was immediately concentrated via a plate ultrafiltration system to 18% protein (wt/wt). The MCC was then diluted to various protein concentrations (6–18%, wt/wt). The highest protein concentrations of MCC formed gels almost immediately on cooling to 4°C, whereas lower concentrations of MCC were viscous liquids. Apparent viscosity (AV) determination using a rotational viscometer, gel strength using a compression test, and protein analysis of supernatants from ultracentrifugation by the Kjeldahl method were performed. The AV data were collected from MCC (6.54, 8.75, 10.66, and 13.21% protein) at 4, 20, and 37°C, and compression force test data were collected for MCC (15.6, 17.9, and 20.3% protein) over a period of 2-wk storage at 4°C. The maximum compressive load was compared at each time point to determine the changes in gel strength over time. Supernatants from MCC of 6.96 and 11.61% protein were collected after ultracentrifugation (100,605 × g for 2 h at 4, 20, and 37°C) and the nitrogen distributions (total, noncasein, casein, and nonprotein nitrogen) were determined. The protein and casein as a percent of true protein concentration in the liquid phase around casein micelles in MCC increased with increasing total MCC protein concentration and with decreasing temperature. Casein as a percent of true protein at 4°C in the liquid phase around casein micelles increased from about 16% for skim milk to about 78% for an MCC containing 11.6% protein. This increase was larger than expected, and this may promote increased viscosity. The AV of MCC solutions in the range of 6 to 13% casein increased with increasing casein concentration and decreasing temperature. We observed a temperature by protein concentration interaction, with AV increasing more rapidly with decreasing temperature at high protein concentration. The increase in AV with decreasing temperature may be due to the increase in protein concentration in the aqueous phase around the casein micelles. The MCC containing about 16 and 18% casein gelled upon cooling to form a gel that was likely a particle jamming gel. These gels increased in strength over 10 d of storage at 4°C, likely due either to the migration of casein (CN) out of the micelles and interaction of the nonmicellar CN to form a network that further strengthened the random loose jamming gel structure or to a gradual increase in voluminosity of the casein micelles during storage at 4°C.  相似文献   

12.
The increasing use and demand for whey protein as an ingredient requires a bland-tasting, neutral-colored final product. The bleaching of colored Cheddar whey is necessary to achieve this goal. Currently, hydrogen peroxide (HP) and benzoyl peroxide (BPO) are utilized for bleaching liquid whey before spray drying. There is no current information on the effect of the bleaching process on the flavor of spray-dried whey protein concentrate (WPC). The objective of this study was to characterize the effect of bleaching on the flavor of liquid and spray-dried Cheddar whey. Cheddar cheeses colored with water-soluble annatto were manufactured in duplicate. Four bleaching treatments (HP, 250 and 500 mg/kg and BPO, 10 and 20 mg/kg) were applied to liquid whey for 1.5 h at 60°C followed by cooling to 5°C. A control whey with no bleach was also evaluated. Flavor of the liquid wheys was evaluated by sensory and instrumental volatile analysis. One HP treatment and one BPO treatment were subsequently selected and incorporated into liquid whey along with an unbleached control that was processed into spray-dried WPC. These trials were conducted in triplicate. The WPC were evaluated by sensory and instrumental analyses as well as color and proximate analyses. The HP-bleached liquid whey and WPC contained higher concentrations of oxidation reaction products, including the compounds heptanal, hexanal, octanal, and nonanal, compared with unbleached or BPO-bleached liquid whey or WPC. The HP products were higher in overall oxidation products compared with BPO samples. The HP liquid whey and WPC were higher in fatty and cardboard flavors compared with the control or BPO samples. Hunter CIE Lab color values (L*, a*, b*) of WPC powders were distinct on all 3 color scale parameters, with HP-bleached WPC having the highest L* values. Hydrogen peroxide resulted in a whiter WPC and higher off-flavor intensities; however, there was no difference in norbixin recovery between HP and BPO. These results indicate that the bleaching of liquid whey may affect the flavor of WPC and that the type of bleaching agent used may affect WPC flavor.  相似文献   

13.
目前,采用膜过滤技术可从脱脂奶中分离酪蛋白,随后通过浓缩、杀菌、干燥等工艺获得浓缩酪蛋白胶束。对浓缩酪蛋白胶束成分的影响因素及其在奶酪生产中的应用进行综述,发现膜过滤期间的pH值、温度和洗滤条件均会影响浓缩酪蛋白胶束的成分,使其具有不同浓度的酪蛋白、乳清蛋白、乳糖以及钙。而且可以利用浓缩酪蛋白胶束标准化原奶,从而制备成分和品质一致的奶酪;也可以利用不同成分的浓缩酪蛋白胶束获得不同的原奶组合物,从而制备所需品质和功能的奶酪。总之,在奶酪生产过程中添加浓缩酪蛋白胶束能够影响奶酪的成分、质地以及风味等,但通过调整膜过滤和奶酪生产的工艺参数可以解决这些问题。未来还需获得一种经济有效的方式来保存浓缩酪蛋白胶束,赋予其更长的保质期,良好的凝乳酶凝乳特性,从而保证奶酪的品质和产量。  相似文献   

14.
Understanding the molecular properties and interactions of components within high-protein dairy powders is important in predicting rehydration performance. Raman spectroscopy was used to generate molecular information which provided insights into interactions between caseins in micellar casein concentrate (MCC) powder formulated with varying proportions of glycomacropeptide (GMP). The Raman bands showed intense peaks at 1446 to 1476 cm−1 (due to CH2 vibration) and 1653 to 1668 cm−1 (due to C=O of Amide I and C=C bond) in MCC powder samples blended with GMP. Enhanced rehydration characteristics of MCC powder containing GMP matched with these differences in Raman peak intensity.  相似文献   

15.
《Journal of dairy science》2023,106(6):3884-3899
Our objective was to determine the effect of addition of dipotassium phosphate (DKP) at 3 different thermal treatments on color, viscosity, and sensory properties of 7.5% milk protein-based beverages during 15 d of storage at 4°C. Micellar casein concentrate (MCC) and milk protein concentrate (MPC) containing about 7.5% protein were produced from pasteurized skim milk using a 3×, 3-stage ceramic microfiltration process and a 3×, 3-stage polymeric ultrafiltration membrane process, respectively. The MCC and MPC were each split into 6 batches, based on thermal process and addition of DKP. The 6 batches were no postfiltration heat treatment with added DKP (0.15%), no postfiltration heat without added DKP (0%), postfiltration high-temperature, short time (HTST) with DKP, postfiltration HTST without DKP, postfiltration direct steam injection with DKP, and postfiltration direct steam injection without DKP. The 6 MCC milk-based beverages and the 6 MPC milk-based beverages were stored at 4°C. Viscosity, color, and sensory properties were determined over 15 d of refrigerated storage. MCC- and MPC-based beverages at 7.5% protein with and without 0.15% added dipotassium phosphate were successfully run through an HTST and direct steam injection thermal process. The 7.5% protein MCC-based beverage contained a higher calcium and phosphorus content (2,425 and 1,583 mg/L, respectively) than the 7.5% protein MPC-based beverages (2,141 and 1,338 mg/L, respectively). Pasteurization (HTST) had very little effect on beverage particle size distribution, whereas direct steam injection thermal processing produced protein aggregates with medians in the range of 10 and 175 μm for MPC beverages. A population of casein micelles at about 0.15 μm was found in both MCC- and MPC-based beverages. Larger particles in the 175-μm range were not detected in the MCC beverages. In general, the apparent viscosity (AV) of MCC beverages was higher than MPC beverages. Added DKP increased the AV of both MCC- and MPC-based beverages, while increasing heat treatment decreased AV. The AV of beverages with DKP increased during 15 d of 4°C of storage for both MCC and MPC, whereas there was very little change in AV during storage without DKP and a similar effect was observed for sensory viscosity scores. The L value of beverages was higher with higher heat treatment, but DKP addition decreased L value and sensory opacity greatly. Sulfur-eggy flavors were detected in MPC beverages, but not MCC-based beverages.  相似文献   

16.
Highly concentrated micellar casein concentrate (HC-MCC) contains ~18% casein with ~70% of whey proteins removed by microfiltration and diafiltration of skim milk, followed by vacuum evaporation for further concentration. When blended with cream, HC-MCC forms recombined concentrated milk (RCM), which could be used as a starting material in cheese making. Our objective was to investigate the rennet coagulation properties of RCM while varying parameters such as casein level, pH, rennet level, and coagulation temperature. The HC-MCC was mixed with cream using low shear at 50°C for 10 min, followed by cooling to 31, 28, or 25°C and adding rennet, and rheological properties were determined. Rennet coagulation time [RCT, the time at which storage modulus (G′) = loss modulus (G″)] decreased from 8.7 to 7.4 min as casein level increased from 3.2 to 5.7%, without a significant additional difference in RCT at casein levels >5.7%. The initial G″ (G″0) increased about 10-fold when casein levels were increased from 3.2 to 10.9%, whereas no change in initial G′ (G′0) was observed. When G′ was measured relative to RCT (i.e., 1, 1.5, or 2 times RCT after RCT was reached, and expressed as G′1, G′1.5, and G′2), log relationship was found between relative G′ and casein level (R2 > 0.94). Lowering coagulation temperature from 31 to 25°C increased G″0 by 6 fold and extended RCT from 7.4 to 9.5 min. After coagulation, relative G′ was initially higher at the lower temperature with G′1 of 3.6 Pa at 25°C and 2.0 Pa at 31°C, but delayed in further development with G′2 of 0.8 kPa at 25°C and 1.1 kPa at 31°C. Lowering pH of RCM from 6.6 to 6.2 resulted in reduced RCT from 11.9 to 6.5 min with increased relative G′ after coagulation. When less rennet was used, RCT increased in a linear inverse relationship without changes in relative G′ or G″. The microstructure of RCM coagulum (~11% casein), observed using transmission electron microscopy, confirmed that RCM curd had a rigid protein matrix containing extensively cross-linked protein strands.  相似文献   

17.
The purpose of this study was to examine flavor binding of high hydrostatic pressure (HHP)-treated whey protein concentrate (WPC) in a real food system. Fresh Washington State University (WSU, Pullman) WPC, produced by ultrafiltration of separated Cheddar cheese whey, was treated at 300 MPa for 15 min. Commercial WPC 35 powder was reconstituted to equivalent total solids as WSU WPC (8.23%). Six batches of low-fat ice cream were produced: A) HHP-treated WSU WPC without diacetyl; B) and E) WSU WPC with 2 mg/L of diacetyl added before HHP; C) WSU WPC with 2 mg/L of diacetyl added after HHP; D) untreated WSU WPC with 2 mg/L of diacetyl; and F) untreated commercial WPC 35 with 2 mg/L of diacetyl. The solution of WSU WPC or commercial WPC 35 contributed 10% to the mix formulation. Ice creams were produced by using standard ice cream ingredients and processes. Low-fat ice creams containing HHP-treated WSU WPC and untreated WSU WPC were analyzed using headspace-solid phase microextraction-gas chromatography. Sensory evaluation by balanced reference duo-trio test was carried out using 50 untrained panelists in 2 sessions on 2 different days. The headspace-solid phase microextraction-gas chromatography analysis revealed that ice cream containing HHP-treated WSU WPC had almost 3 times the concentration of diacetyl compared with ice cream containing untreated WSU WPC at d 1 of storage. However, diacetyl was not detected in ice creams after 14 d of storage. Eighty percent of panelists were able to distinguish between low-fat ice creams containing untreated WSU WPC with and without diacetyl, confirming panelists’ ability to detect diacetyl. However, panelists were not able to distinguish between low-fat ice creams containing untreated and HHP-treated WSU WPC with diacetyl. These results show that WPC diacetyl-binding properties were not enhanced by 300-MPa HHP treatment for 15 min, indicating that HHP may not be suitable for such applications.  相似文献   

18.
19.
Off-flavors in whey protein negatively influence consumer acceptance of whey protein ingredient applications. Clear acidic beverages are a common application of whey protein, and recent studies have demonstrated that beverage processing steps, including acidification, enhance off-flavor production from whey protein. The objective of this study was to determine the effect of preacidification of liquid ultrafiltered whey protein concentrate (WPC) before spray drying on flavor of dried WPC. Two experiments were performed to achieve the objective. In both experiments, Cheddar cheese whey was manufactured, fat-separated, pasteurized, bleached (250 mg/kg of hydrogen peroxide), and ultrafiltered (UF) to obtain liquid WPC that was 13% solids (wt/wt) and 80% protein on a solids basis. In experiment 1, the liquid retentate was then acidified using a blend of phosphoric and citric acids to the following pH values: no acidification (control; pH 6.5), pH 5.5, or pH 3.5. The UF permeate was used to normalize the protein concentration of each treatment. The retentates were then spray dried. In experiment 2, 150 μg/kg of deuterated hexanal (D12-hexanal) was added to each treatment, followed by acidification and spray drying. Both experiments were replicated 3 times. Flavor properties of the spray-dried WPC were evaluated by sensory and instrumental analyses in experiment 1 and by instrumental analysis in experiment 2. Preacidification to pH 3.5 resulted in decreased cardboard flavor and aroma intensities and an increase in soapy flavor, with decreased concentrations of hexanal, heptanal, nonanal, decanal, dimethyl disulfide, and dimethyl trisulfide compared with spray drying at pH 6.5 or 5.5. Adjustment to pH 5.5 before spray drying increased cabbage flavor and increased concentrations of nonanal at evaluation pH values of 3.5 and 5.5 and dimethyl trisulfide at all evaluation pH values. In general, the flavor effects of preacidification were consistent regardless of the pH to which the solutions were adjusted after spray drying. Preacidification to pH 3.5 increased recovery of D12-hexanal in liquid WPC and decreased recovery of D12-hexanal in the resulting powder when evaluated at pH 6.5 or 5.5. These results demonstrate that acidification of liquid WPC80 to pH 3.5 before spray drying decreases off-flavors in spray-dried WPC and suggest that the mechanism for off-flavor reduction is the decreased protein interactions with volatile compounds at low pH in liquid WPC or the increased interactions between protein and volatile compounds in the resulting powder.  相似文献   

20.
The flavor of whey protein can carry over into ingredient applications and negatively influence consumer acceptance. Understanding sources of flavors in whey protein is crucial to minimize flavor. The objective of this study was to evaluate the effect of annatto color and starter culture on the flavor and functionality of whey protein concentrate (WPC). Cheddar cheese whey with and without annatto (15 mL of annatto/454 kg of milk, annatto with 3% wt/vol norbixin content) was manufactured using a mesophilic lactic starter culture or by addition of lactic acid and rennet (rennet set). Pasteurized fat-separated whey was then ultrafiltered and spray dried into WPC. The experiment was replicated 4 times. Flavor of liquid wheys and WPC were evaluated by sensory and instrumental volatile analyses. In addition to flavor evaluations on WPC, color analysis (Hunter Lab and norbixin extraction) and functionality tests (solubility and heat stability) also were performed. Both main effects (annatto, starter) and interactions were investigated. No differences in sensory properties or functionality were observed among WPC. Lipid oxidation compounds were higher in WPC manufactured from whey with starter culture compared with WPC from rennet-set whey. The WPC with annatto had higher concentrations of p-xylene, diacetyl, pentanal, and decanal compared with WPC without annatto. Interactions were observed between starter and annatto for hexanal, suggesting that annatto may have an antioxidant effect when present in whey made with starter culture. Results suggest that annatto has a no effect on whey protein flavor, but that the starter culture has a large influence on the oxidative stability of whey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号