首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
为了平衡热门视频直播服务的用户体验质量和系统总体成本,设计一种基于分布式禁忌人工蜂群算法的云视频直播优化算法。将禁忌搜索技术引入人工蜂群算法,对人工蜂群算法的全局搜索阶段和局部开发阶段均进行增强处理;以云服务站点和视频显示格式的选择为控制量,以视点的受欢迎度和观看者的可用带宽为约束条件,以最大化用户体验质量和最小化系统总成本为优化目标,建立云视频直播问题的模型;设计分布式的禁忌人工蜂群算法求解云视频直播问题的次优解,计算最优的控制方案。实验结果表明,该算法有效地降低了系统的总体成本,并且优于其他同类型的策略。  相似文献   

2.
人工蜂群算法在并行测试任务调度中的应用   总被引:1,自引:0,他引:1  
并行测试是下一代自动测试系统的关键技术之一,而并行测试任务调度是并行测试的核心内容;首先建立并行测试调度的数学模型,根据人工蜂群算法解决动态调度优化问题的优势,提出基于人工基于蜂群算法的并行测试任务调度方法;并给出应用实例,仿真实验表明:该算法收敛快、准确率高,能有效解决并行测试调度优化问题。  相似文献   

3.
《软件工程师》2020,(3):22-27
随着云计算的发展,越来越多的人开始使用云来处理他们的业务,这对公有云平台提出了一些重要挑战:如何让公有云平台在不断激增的云业务模式下,既能保证云用户的服务满意度,同时也能稳步提高云服务商(CloudServiceProviders)的收益。首先建立了任务调度算法以及QoS需求约束等相关模型,然后将QoS(Qualityof Service)需求约束分别引入到三种传统任务调度算法(FCFS(RR)、MinMin和MaxMin算法)中对其进行改进,接着将改进后的算法与传统任务调度算法之间进行比较,通过选取在任务完成度、任务最终完成时间(MakeSpan)、任务平均执行时间(这些影响用户的服务满意度),以及云服务商总收益等方面的指标表现,最后确定了一个较好的改进MinMin任务调度算法(I-MinMin算法)。实验通过CloudSim进行模拟,并采用了现有的阿里云ECS云服务器中的虚拟机实例相关数据。结果表明:在任务量不断增加的情况下,I-MinMin算法在用户的服务满意度各方面,以及云服务商总收益等指标表现上要更优于其他算法,更好地实现了用户和云服务商的双重利益。  相似文献   

4.
云变异人工蜂群算法   总被引:2,自引:0,他引:2  
林小军  叶东毅 《计算机应用》2012,32(9):2538-2541
针对传统人工蜂群算法存在收敛速度慢和易陷入局部最优的问题,提出一种基于云模型的改进人工蜂群算法。通过正态云算子计算候选位置,自适应调整算法的局部搜索范围,以提高算法的收敛速度和勘探能力。为保持种群多样性,引入一个新的概率选择策略,使较差的个体具有较大的选择概率,并且利用历史最优解探索新的位置。标准复合函数测试表明,改进算法的收敛速度和求解精度得到提升,优于一些新近提出的改进人工蜂群算法。  相似文献   

5.
基因表达数据是由DNA微阵列实验产生的大规模数据矩阵,双聚类算法是挖掘数据矩阵中具有较高相关性的子矩阵,能有效地提取生物学信息.针对当前多目标双聚类优化算法易于陷入早熟和局部最优解等问题,论文提出了基于逻辑运算的离散人工蜂群优化双聚类算法(LOABCB算法),一方面引入人工蜂群算法增强双聚类的全局寻优能力,另一方面通过...  相似文献   

6.
针对云计算环境下用户日益多样化的QoS需求和高效的资源调度要求,提出了基于改进蜂群算法的多维QoS云计算任务调度算法,其中包括构建任务模型、云资源模型和用户QoS模型。为了获得高效的调度,引入蜂群算法。针对该算法在后期收敛速度变慢且易陷入局部最优的问题,引入收益比、跟随比概念及当前个体最优值及随机向量,避免"早熟"现象的出现。通过实验仿真,将该算法HEFT与和ABC算法进行比较,实验表明,该算法能获得较高的调度效率和用户满意度。  相似文献   

7.
在研究蚁群算法的基础上针对云计算技术展开研究,对蚁群算法应用于云任务调度的可行性进行了分析,提出了云环境下基于蚁群任务调度算法的基本策略,力图实现实训云系统的高可用性和负载均衡,并希望能为后续研究工作提供一些有意义的探索和思路。  相似文献   

8.
针对基本人工蜂群算法种群多样性难以保持,进化速度慢等问题,提出了一种基于非线性递减选择策略的人工蜂群算法.算法在雇佣蜂阶段采用非线性递减选择策略以提高种群的多样性,进而改善种群的全局勘探能力;在跟随蜂阶段由全局最优解引导搜寻新解,以提高种群的局部开发能力;侦察蜂采用贴近最优解的策略以提高生成新解的质量,加速种群进化.改进的三个阶段改善了算法的寻优性能,最后通过实验对比与分析,验证了该算法的有效性.  相似文献   

9.
葛宇  梁静  王学平 《计算机科学》2013,40(6):247-251
为提高人工蜂群算法在求解优化问题中的性能,结合极值优化策略提出一种改进的人工蜂群算法.改进算法基于极值优化策略高效率的寻优机制重新设计了原算法中跟随蜂的局部搜索方案,并具体给出了新方案的组元变异算子和最差组元判定规则.通过对优化问题中8个典型测试函数的仿真实验表明,与基本人工蜂群算法和已有的典型改进算法相比,改进算法在寻优精度和收敛速度上均有明显提高,在优化问题求解中体现出较强的寻优能力.  相似文献   

10.
针对云计算任务调度问题,结合粒子群优化(PSO)算法的种群个体协作和信息共享特点,提出一种基于离散粒子群优化(DPSO)的任务调度算法。采用随机方法生成初始种群,利用时变方式调整惯性权重,并在位置更新中使用绝对值取整求余映射法进行合法化处理,提高PSO算法的离散化程度。搭建并重新编译了CloudSim云计算仿真平台进行实验,结果显示,当迭代次数为200时,DPSO、PSO、GA算法的所有任务最终调度时间分别为457.69 s、467.90 s、472.41 s,从而证明DPSO算法能够有效解决云计算环境下的任务调度问题,并且算法收敛速度优于PSO和GA算法。  相似文献   

11.
基于自适应蜂群算法的云计算负载平衡机制   总被引:1,自引:0,他引:1  
姚婧  何聚厚 《计算机应用》2012,32(9):2448-2450
针对将蜂群算法应用在负载平衡系统中,出现的由于请求之间关系处理不当而产生的不利于负载平衡的资源局部密集现象,提出了改进的自适应蜂群算法。通过引进其他类型的请求,以阻断短时间内本该到来的与该服务器处理的请求有某些相似的请求,由此增强了负载平衡的可用性,提高了系统吞吐量。实验结果表明基于蜂群算法的负载平衡机制无论是在系统吞吐量方面或是系统可扩展性方面均适用于云计算环境,改进的自适应蜂群算法在系统吞吐量方面较传统算法性能提高5%以上。  相似文献   

12.
针对一类最小化最大完工时间的同类机调度问题,考虑到机器的加工效率和产品的交付时间,引入同类机调度问题的数学模型,提出一种改进的离散型人工蜂群算法(IDABC)求解该问题。首先,引入种群初始化策略,得到均匀分布的种群,并获得待优参数的生成策略,加快种群的收敛;其次,借鉴差分进化算法的变异算子和模拟退火算法的思想,改进雇佣蜂和跟随蜂的局部搜索策略,并利用最优解的优质信息改进侦察蜂,增加种群多样性、防止算法陷入局部最优;最后,分析算法的性能和参数,并将改进的算法应用于同类机调度问题,在15个算例上的实验结果表明,与混合离散人工蜂群(HDABC)算法相比,IDABC的求解精度和稳定性分别平均提高了4.1%和26.9%,且具有更好的收敛性,表明在实际场景中IDABC可以有效求解同类机调度问题。  相似文献   

13.
针对离散隐马尔可夫(Discrete Hidden Markov Model,DHMM)语音识别系统中LBG算法对初始码书的依赖性和易陷入局部最优解的问题,采用人工蜂群(Artificial Bee Colony,ABC)算法对语音特征参数进行矢量量化,从而得到最优码书,提出了ABC改进DHMM的孤立词语音识别方法。先提取语音信号的特征参数,然后用ABC算法中每个食物源表示一个码书,以人工蜂群进化的方式对初始码书进行迭代而获得最优码书,最后把最优码书的码矢标号代入DHMM模型进行训练和识别。实验结果表明,ABC改进的DHMM语音识别方法与传统的LBG及粒子群优化初始码书的LBG的DHMM语音识别方法相比具有较高的识别率和较好的鲁棒性。  相似文献   

14.
为实现柔性工艺与车间调度集成优化,在考虑工件特征的加工工艺、次序及加工机器的柔性基础上,以最小化最大完工时间为优化目标,提出一种基于交叉变异的人工蜂群算法。该算法针对柔性工艺与车间调度集成问题的离散性特征,对工艺路线进行序列编码,工件调度采用基于工序的编码方式。通过工艺种群与调度种群的交叉变异操作,分别使采蜜蜂及观察蜂进行局部寻优,侦查蜂进行全局寻优,以此提高算法性能。在此基础上用两部分测试实例分别验证了集成研究的必要性及改进算法的有效性。  相似文献   

15.
针对经典人工蜂群(ABC)算法搜索策略存在搜索机制单一、群体全局搜索与局部搜索运算耦合性较高的问题,提出一种基于混合搜索的多种群人工蜂群(MPABC) 算法。首先,将种群按照适应度值进行排序,得到一个有序队列,进而将其划分为随机子群、核心子群和平衡子群三类有序子群;其次,针对不同子群结合相应的个体选择机制与搜索策略,构建出不同的差异向量;最后,在群体的搜索过程中,通过三类子群实现对具有不同适应度函数值个体的有效控制,来增强群体全局搜索和局部搜索的平衡能力。通过对16个标准测试函数进行仿真实验并与具有可变搜索策略的人工蜂群(ABCVSS)算法、基于选择概率的改进人工蜂群(MABC)算法、基于粒子群策略的多精英人工蜂群(PS-MEABC)算法、基于符号函数的多搜索策略人工蜂群(MSSABC)算法和优化高维复杂函数的改进人工蜂群(IABC)算法共五种典型的蜂群算法进行了对比,实验结果显示MPABC具有较好的优化效果;与ABC算法相比,MPABC在求解高维(100维)复杂问题上的收敛速度提高了约23%,且求解精度更优。  相似文献   

16.
如何对任务进行高效合理的调度是云计算需要解决的关键问题之一,针对云计算的编程模型框架,在传统粒子群优化算法(PSO)的基础上,提出了一种具有双适应度的粒子群算法(DFPSO)。通过该算法不但能找到任务总完成时间较短的调度结果,而且此调度结果的任务平均完成时间也较短。仿真分析结果表明,在相同的条件设置下,该算法优于传统的粒子群优化算法,当任务数量增多时,其综合调度性能优点明显。  相似文献   

17.
梁冰  徐华 《计算机应用》2017,37(9):2600-2604
针对核模糊C均值(KFCM)算法对初始聚类中心敏感、易陷入局部最优的问题,利用人工蜂群(ABC)算法的构架简单、全局收敛速度快的优势,提出了一种改进的人工蜂群算法(IABC)与KFCM迭代相结合的聚类算法。首先,以IABC求得最优解作为KFCM算法的初始聚类中心,IABC在迭代过程中将与当前维度最优解的差值的变化率作为权值,对雇佣蜂的搜索行为进行改进,平衡人工蜂群算法的全局搜索与局部开采能力;其次,以类内距离和类间距离为基础,构造出适应KFCM算法的适应度函数,利用KFCM算法优化聚类中心;最后,IABC和KFCM算法交替执行,实现最佳聚类效果。采用3组Benchmark测试函数6组UCI标准数据集进行仿真实验,实验结果表明,与基于改进人工蜂群的广义模糊聚类(IABC-KGFCM)相比,IABC-KFCM对数据集的聚类有效性指标提高1到4个百分点,具有鲁棒性强和聚类精度高的优势。  相似文献   

18.
针对标准人工蜂群(ABC)算法易陷入局部极值的问题,对标准ABC算法的轮盘赌选择机制进行了修改,提出了一种基于动态评价选择策略的改进人工蜂群(DSABC)算法。首先,根据到当前为止一定迭代次数内蜜源位置的连续更新或停滞次数,对每个蜜源位置进行动态评价;然后,利用所得的评价函数值为蜜源招募跟随蜂。在6个经典测试函数上的实验结果表明:与标准ABC算法相比,动态评价选择策略改进了标准ABC算法的选择机制,使得DSABC算法的求解精度有较大幅度提高,特别是对于两种不同维数的Rosenbrock函数,所得最优值的绝对误差分别由0.0017和0.0013减小到0.000049和0.000057;而且,DSABC算法克服了进化后期因群体位置多样性丢失较快而产生的早熟收敛现象,提高了整个种群的收敛精度及解的稳定性,从而为函数优化问题提供了一种高效可靠的求解方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号