共查询到19条相似文献,搜索用时 78 毫秒
1.
针对现有的频谱感知存在信号稀疏度估计所需压缩观测值不能满足信号稀疏度变化时实时跟踪的问题,研究一种基于稀疏系数信息估计的自适应宽带频谱压缩感知方法,在流信号进行稀疏度未知的压缩时,先采集由先验信息得到的观测值数目.在采集到的观测值数目上自适应调整,得到信号稀疏度估计所需的观测值数目,并精确估计信号的稀疏度.仿真结果表明,SCI-CSS算法对流信号频谱能够保持良好的收敛性和较快的跟踪速度,且能有效地确定使信号稀疏度估计所需压缩观测值数目并随信号稀疏度自适应调整,实现对信号稀疏度变化的实时跟踪. 相似文献
2.
压缩感知理论的基本思想是原始信号在某一变换域是稀疏的或者是可压缩的,并将奈奎斯特采样定理中的采样过程和压缩过程合二为一。稀疏度自适应匹配追踪(SAMP)算法能够实现稀疏度未知情况下的重构,而广义正交匹配追踪算法每次迭代时选择多个原子,提高了算法的收敛速度。基于上述两种重构算法的优势,提出了广义稀疏度自适应匹配追踪(Generalized Sparse Adaptive Matching Pursuit,gSAMP)算法。针对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标,以及主观视觉上对所提算法与传统的贪婪算法进行对比。在压缩比固定为0.5时,gSAMP算法的重构效果优于传统的MP、OMP、ROMP、SAMP以及gOMP贪婪类重构算法的效果。 相似文献
3.
结合压缩感知理论(CS),针对压缩采样匹配追踪算法在多输入多输出正交频分复用(MIMO_OFDM)系统信道估计应用中需要利用信号稀疏度的先验条件,而实际中稀疏度又难获得的情况,提出一种信号稀疏度自适应的压缩采样改进匹配追踪算法(CoMSaMP)。该算法采用具有理论支撑的原子弱选择标准作为预选方案,并设置首次裁剪阈值来减少算法多余的迭代,降低算法在信道估计中的复杂度,裁剪方式的改进保证了重构精度的提高,最终实现MIMO-OFDM稀疏信道估计中信号的稀疏度自适应。仿真结果表明:与原算法相比,该算法在同等信噪比条件下具有更优的信道估计性能,从而提高了频谱利用率,同时降低了复杂度,在稀疏度较高时,提出的算法具有更好的对噪声的抗干扰能力。 相似文献
4.
针对MIMO-TDCS系统频谱感知中因数据量大而较难实现的难题,提出一种利用压缩感知的MIMO-TDCS频谱感知方法.在电磁环境一致的情况下,收发两端分别用远低于乃奎斯特的采样速率对电磁环境信号进行采样,然后用正交匹配追踪算法对信号进行重构,并通过二元门限进行状态判决.实验结果证明,运用压缩感知技术能大大减少电磁环境宽带信号的快速采样和处理难度,在选取合理测量值的情况下能够准确恢复信号,进而能有效地检测和剔除干扰,达到抗干扰的目的. 相似文献
5.
6.
7.
针对OFDM系统中传统最小二乘(LS)信道估计方法需要大量导频估计精度却不高的问题,提出基于压缩采样匹配追踪(CoSaMP)的压缩感知信道估计新方法.利用发送信号,接收信号和信道的频城关系建立基于压缩感知的数学模型,再采用CoSaMP算法对信道进行重构.仿真结果表明,与LS算法相比,基于CoSaMP的压缩信道估计方法能利用少量的导频信号达到与之相比拟的信道估计性能,提高了频谱利用率;与现有压缩感知信道估计算法(基追踪(BP)与正交匹配追踪(OMP)相比,在使用相同导频数目条件下,具有更好的信道估计性能和更低的计算复杂度. 相似文献
8.
压缩感知理论的提出和分析大都侧重于一维稀疏信号或在变换域稀疏的信号,不利于应用于图像信号。文章以正交匹配追踪(Orthogonal Matching Pursuit,OMP)算法为例,分析了该算法的原信号的稀疏度对重建质量的影响,给出了该值的参考范围。同时,对于图像信号的重建,对比了分块和分行方案在重建效果和耗时上的差异。结果表明,当子块大小合适时,可以在重建质量和耗时方面实现较好的平衡。 相似文献
9.
为了降低重构算法的复杂度,提高重构的精确度,提出一种自适应阈值的稀疏度自适应匹配追踪算法(SAMP),并将其运用在OFDM稀疏信道估计中。蒙特卡洛仿真证明,改进后的算法相比于原算法在CPU运行时间上减少了44.7%,并且在较低的信噪比下也能达到较好的估计效果。此外,针对OFDM稀疏信道估计问题,结合压缩感知理论中观测矩阵的构造方法,提出一种新的导频图案分布设计方法,仿真证明该导频图案设计方法比现有方法在估计精确度方面提高2~4dB。 相似文献
10.
压缩感知理论是近年来信号处理领域诞生的一种新的信号处理理论。相较于传统的奈奎斯特采样定率,压缩感知理论采样数据量少,节省了后续处理时间和存储空间,这使其在信号处理领域有着广阔的应用前景。首先讨论了应用压缩感知理论的三个关键问题:信号稀疏表示、随机测量矩阵设计、信号重构算法,初步研究了压缩感知理论在图像压缩技术中的应用,给出了在不同压缩率下的重构图像和PSNR。计算机模拟结果表明了理论的可行性。 相似文献
11.
针对压缩采样匹配追踪( CoSaMP)算法重构精度相对较差的问题,为了提高算法的重构性能,提出了一种基于伪逆处理改进的压缩采样匹配追踪( MCoSaMP)算法。首先,在迭代前,对观测矩阵进行伪逆处理,以此来降低原子间的相干性,从而提高原子选择的准确性;然后,结合正交匹配追踪算法( OMP),将OMP算法迭代K次后的原子和残差作为CoSaMP算法的输入;最后,每次迭代后,通过判断残差是否小于预设阈值来决定算法是否终止。实验结果表明,无论是对一维高斯随机信号还是二维图像信号,MCoSaMP算法的重构效果优于CoSaMP算法,能够在观测值相对较少的情况下,实现信号的精确重构。 相似文献
12.
13.
基于OpenMP的压缩感知并行处理算法 总被引:1,自引:0,他引:1
针对压缩感知重建算法复杂度高、运行时间长等缺点,提出一种应用于多核处理器的压缩感知并行算法。在认真分析压缩感知算法的基础上,利用OpenMP对压缩感知的编码测量和正交匹配追踪(OMP)算法进行并行处理,提升程序的性能。实验结果表明,随着线程数的增加,程序的执行效率显著提高,加速比呈线性增长; 并且重构过程越复杂,其性能优化越明显。 相似文献
14.
在压缩感知框架下运用正则化正交匹配追踪(ROMP)算法进行图像重构时,迭代次数取值不合适会严重降低重构图像的质量。针对这一问题,提出了确定合理迭代次数的方法。将以往迭代得出的结果作为先验知识,获取具有不同稀疏程度图像块的最佳迭代次数,从而保证了整幅图像的重构质量。实验表明,该方法重构效果优于采用固定迭代次数的ROMP算法。 相似文献
15.
16.
针对频分复用双工方式的大规模多输入多输出(MASSIVE MIMO)系统在虚拟角域信道中估计精度较差的问题,提出一种基于门限的稀疏度自适应匹配追踪(BT-SAMP)算法。该算法融合了回溯正交匹配追踪(BAOMP)算法的原子选择特性和稀疏度自适应匹配追踪(SAMP)算法的自适应特性,将BAOMP算法的"添加原子"规则作为SAMP算法的原子选择预处理,通过合理的阈值添加固定的原子,然后延续SAMP算法的步长迭代自适应特性,寻找到信道矩阵近似系数最大,达到了提高SAMP算法估计精度、加快算法收敛的目的。仿真结果表明,在低信噪比(SNR)情况下,与SAMP算法相比,信道估计精度均有提高,特别是信噪比在0~10 dB时,其估计精度提升4 dB,算法的运行时间减少约61%。 相似文献
17.
针对可重构智能超表面(RIS)辅助无线通信系统中使用传统信道估计方法导频开销过高的问题,提出了一种基于块稀疏的正交匹配追踪(OMP)信道估计方案。首先,根据毫米波(mmWave)信道模型推导出级联信道矩阵,并将其转换到虚拟角域(VAD)中以获得级联信道的稀疏表示;其次,利用级联信道特有的稀疏特性将信道估计问题转换成稀疏矩阵恢复问题,并使用压缩感知的重构算法进行稀疏矩阵的恢复;最后,通过分析特殊的行-块稀疏结构,对传统的OMP方案进行优化,从而进一步减少导频开销并提升估计性能。仿真结果表明,与传统的OMP方案相比,所提出的基于行-块稀疏结构的优化OMP方案的归一化均方误差(NMSE)减小了大约1 dB。可见,所提出的信道估计方案能够有效减少导频开销并获得更好的估计性能。 相似文献
18.
针对频率选择性衰落信道下的放大转发协同正交频率复用(OFDM)通信系统,提出一种基于压缩感知理论的稀疏信道估计方法。首先,构造协同OFDM系统模型,利用循环矩阵理论,将该系统模型变换成类似于传统的点对点系统模型,该模型由一个协同卷积信道矢量和等效的观测矩阵组成;然后,通过压缩感知理论证明,该等效矩阵以很高的概率满足严格等距特性(RIP);最后,利用压缩感知算法重构卷积信道脉冲响应。与传统的线性信道估计方法相比较,所提方法能够利用较少的训练序列达到稳健的信道估计,有效地提高频谱资源利用率,且具备计算复杂度低的特点。仿真结果验证了该方法的有效性。 相似文献
19.
基于矩阵置换的分块压缩感知(BCS)引入矩阵置换的策略,使复杂子块和稀疏子块向介于两者中间的稀疏度水平变化,用单一采样率采样时可以减少块效应,但仍存在块间稀疏度均衡效果较差的问题。为了得到更好的重构效果,提出基于波浪式矩阵置换的稀疏度均衡BCS(BCS-RMP)算法。首先,在采样前对图像进行矩阵置换的预处理,通过波浪式置换矩阵对图像各子块的稀疏度进行均衡;然后,采用相同的测量矩阵对子块进行采样,在解码侧进行重构;最后,通过波浪式置换逆矩阵对重构结果进行逆变换得到最终的重构图像。仿真结果表明,与现有矩阵置换算法相比,当选择合适的子块大小和采样率时,所提波浪式矩阵置换算法可有效提高图像的重构质量,且能更准确地体现细节信息。 相似文献