首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pineal hormone melatonin is secreted with a marked circadian rhythm. Normally, maximum production occurs during the dark phase of the day and the duration of secretion reflects the duration of the night. The changing profile of secretion as a function of daylength conveys photoperiodic information for the organization of seasonal rhythms in mammals. The role of melatonin in mammalian circadian physiology is less clear. However, exogenous melatonin can phase shift, and in some cases entrain, circadian rhythms in rodents and humans. It can also lower body temperature and induce transient sleepiness. These properties indicate that melatonin can be used therapeutically in circadian rhythm disorder. Successful outcomes have been reported, for example in jet lag and shift work, and with cyclic sleep disorder of some blind subjects. Melatonin receptors of several subtypes are found in the brain, the retina, the pituitary and elsewhere. They are currently under intense investigation. Melatonin agonists and antagonists are under development.  相似文献   

2.
The daily profile of serum level of melatonin was studied in 10 young and 13 elderly subjects. All of the subjects were physically and psychiatrically healthy and did not have any clinical symptoms related to rhythm disturbance. Blood samples were taken every 3 h for 1 day and serum melatonin levels were determined by RIA. All except for 1 of the elderly subjects exhibited a clear circadian rhythm of serum melatonin level with a nocturnal peak. In both subject groups, the melatonin rhythm showed significant diurnal variation. There was no significant difference in the total melatonin level per day between young and elderly groups, suggesting that there was no influence of aging on daily total melatonin secretion. However, there was a marked difference in the features of the melatonin rhythm between the two groups, i.e., a rapid decline of the melatonin level from the nocturnal peak in the elderly group, suggesting that the off-set time of melatonin secretion advances with aging. Our findings suggest that the pattern of melatonin rhythm alters significantly without clear clinical symptoms in the process of senescence.  相似文献   

3.
Both endogenous and exogenous factors are involved in regulation of endocrine secretions. Among the exogenous ones, light plays an important role both in animals and in humans. Pineal gland mediates light action on the endocrine system, by means of variations of melatonin (MT) secretion. Here we discuss about the influence of abnormal light-dark cycles and in particular of blindness on pineal and pituitary secretions and on those of correlated glands. MT secretion is usually inhibited by light: thus it reaches the highest levels at night. Exposure to short or long photoperiod causes variations in circadian or infradian MT rhythmicity. Blind patients can show higher daytime levels with a phase-advanced or phase-delayed circadian rhythm. Lack of light stimulus affects cortisol rhythm shifting the zenith of secretion and inducing a free-running rhythm. Blindness can abolish nocturnal growth hormone (GH) peak and impair the GH response to some stimuli; moreover it impairs the growth of affected patients. Light stimulus influences favorably gonadal function both in animals and in man. In animals, sexual activity and gonadal function decline during the seasons with reduced luminosity. A similar finding has been described in women living in a region with a strong seasonal contrast in luminosity. Blindness can impair luteinizing hormone, follicle-stimulating hormone, prolactin and testosterone secretion in prepubertal boys causing pubertal delay or more severe hypogonadism; it can affect pubertal development and fertility in women. Light can influence thyroid function in animals. Lack of light stimulus in blind man seems to cause different effects on thyroid function before and after puberty. Increase of free thyroid hormone levels has been found in prepubertal but not in adult blind patients, probably due to a resetting of the threshold for thyrotropin feedback suppression after puberty in these patients.  相似文献   

4.
For either clinical or research purposes, the timing of the nocturnal onset in production of the urinary melatonin metabolite 6-sulfatoxymelatonin (UaMT6s-onset), has been proposed as a reliable and robust marker of circadian phase. However, given that most circadian rhythms show cycle-to-cycle variability, the statistical reliability of phase estimates obtained from a single study using UaMT6s-onset remains to be determined. Following 2 weeks of sleep diary and wrist actigraphy, 15 young, healthy good sleepers participated in four UaMT6s sampling sessions spaced 1 day apart. During the sampling sessions subjects remained indoors under low light conditions and hourly urine samples were collected from 19:00 to 02:00 h. Samples were subsequently assayed for UaMT6s using standard radioimmunographic techniques. UaMT6s-onset was determined by the time at which melatonin production exceeded the average of three proceeding trials by 100%. Sleep onset times were derived from sleep diary and actigraphic measures taken before the melatonin collection nights. We found that there was no significant variation between nights in group mean UaMT6s-onset times, and intraindividual variability was small. In addition, UaMT6s-onset times were highly and significantly correlated between nights (grand mean r = 0.804). Our results suggest that within 95% confidence interval limits, individual UaMT6s-onset estimates obtained from a single night UaMT6s-onset study can be used to predict subsequent UaMT6s-onset times within +/- 97 min. A close temporal relationship was also found between the timing of UaMT6s-onset and sleep onset. Overall, our results suggest that under entrained conditions single-session UaMT6s-onset studies can provide reliable individual UaMT6s-onset phase estimates and that the protocol described in this study is a practical and noninvasive methodology.  相似文献   

5.
Melatonin is a neurohormone produced during the night by the pineal gland. Its secretion is regulated by circadian and seasonal variations in daylength, transmitted via visual projections to the suprachiasmatic nucleus which functions as a circadian clock in mammals. Melatonin has been proposed to act as an internal synchronizer of circadian rhythms generated at different levels of the organism. The chronobiotic effects of melatonin in humans have been mainly studied in circadian rhythm sleep disorders related to jet lag, shift work, blindness or aging. Alterations of the melatonin profiles have also been reported in other biological rhythm disorders.  相似文献   

6.
The present study was conducted to determine the size of changes and the time point of those changes in biological rhythms during night-shift and whether they are associated with tolerance to shiftwork. The adrenal hormone cortisol has frequently been investigated in the field of shiftwork since it follows a pronounced circadian variation and has been demonstrated to be affected by night-work. However, studies are restricted with respect to sample size, number of measurements or duration of sampling periods. Therefore, a sample of 24 night-shift workers was investigated in a cardiac emergency unit for seven nights. Saliva samples were collected frequently for determination of cortisol. A total of 28 cortisol measurements in each subject were made in order to decide whether the circadian rhythm changed, and if so at which time point. A clear reversal of circadian function could be observed for the total group (mean cortisol concentrations) after the fifth night. However, inspection of individual patterns revealed that six out of 24 subjects did not change in circadian function. These subjects exhibited lower durations of and less consistency in recovery sleep across the following days after night-work. With respect to personality dimensions a pattern associated with neuroticism can be observed in subjects without appropriate changes in cortisol rhythm. However, owing to the small sample size of non-adapters these results are preliminary and should be replicated with larger samples. The overall relationship between neuroticism and low adaptability has been discussed.  相似文献   

7.
Aging results in a more shallow sleep accompanied by a blunted growth hormone (GH) secretion. In young male normal controls repetitive administration of GH-releasing hormone (GHRH) at the beginning of the night results in an increased secretion of GH, a blunting of cortisol and a stimulation of slow-wave sleep (SWS). In healthy elderly men and women, however, GHRH exerts only weak effects on sleep-endocrine activity. In a previous report continuous treatment of healthy elderly males by repetitive administration of GHRH (during 12 days administration with 100 micrograms GHRH i.v. at 9.00 h every second day, "priming") enhanced GHRH stimulated GH secretion at daytime markedly. We tested if priming with GHRH results in a more distinct modulation of the nocturnal hormone secretion and of the sleep EEG than acute administration of the peptide. Two elderly male controls spent first three consecutive nights in the sleep laboratory, the first of which served for adaptation to laboratory conditions. During the two other nights (at days 1 and 2) sleep EEG was recorded and blood was sampled for determining the secretion of GH, cortisol and ACTH. In one of the nights the subjects received 50 micrograms GHRH hourly between 22.00 h and 1.00 h (4 x 50 micrograms) or placebo. The next examination followed after the priming period at day 14 and the last was performed two weeks after treatment at day 28. After the baseline administration of 4 x 50 micrograms GHRH before priming no clear changes of sleep EEG towards improved sleep were detectable, whereas GH secretion was increased. After priming sleep period time and SWS time were lower compared to the baseline night with GHRH administration, whereas REM time duration increased. GHRH induced GH secretion was not enhanced after priming. ACTH secretion was markedly enhanced compared to baseline stimulation. We conclude that priming with GHRH has no sleep improving effect and does not change hormone secretion in elderly normal subjects. Hence in the elderly priming with GHRH is not capable to induce a rejuvenation of sleep endocrine activity.  相似文献   

8.
Rhythms of daily activity are found in all vertebrate species, some of them being diurnal (like humans, dogs, pigeons), others--nocturnal (like mice, rats and bats). Some species undergo very pronounced seasonal changes, as they hibernate in the winter or mate only at the specific seasons. The main regulator (a clock and a calendar) for daily and seasonal rhythms is the periodicity of the external light-darkness, reflected by the periodicity of melatonin secretion from the pineal gland, which is inhibited by light and induced during the darkness. In contrast to melatonin which peaks during the night both in diurnal and noctural species, the cyclicity of other hormones and several immune parameters correlates with the pattern of the animal locomotor activity-resting. The immune parameter that peaks at one time of day for a diurnal species peaks about 12 h later for a nocturnal one. Various immune parameters peak at various time points, anticipating an encounter with pathogens during the period of activity while energetically expensive resolution of the immune response during the resting. Daily and seasonal cyclicity of the immune functions are temporally integrated with other physiologic and behavioral processes and all of them are regulated and coordinated with daily and seasonal changes of an external environment by the neuroendocrine homeostatic system.  相似文献   

9.
Long-lived mammals from cold and temperate climates, including many species of deer, express overt cycles in reproduction, moulting, fattening and other characteristics. These cycles persist under constant conditions, but are normally induced and entrained by the annual cycle in daylength. The photoperiod-relay involves the eyes, the suprachiasmatic nuclei (SCN) of the hypothalamus and the pineal gland which secretes melatonin only at night. The duration of daily melatonin secretion varies with daylength and provides an internal endocrine signal for the time-of-year. In deer, treatments with melatonin induce phase-shifts in all overt seasonal rhythms. Melatonin is thought to act on specific target cells in the brain and pituitary gland which express high affinity melatonin receptors. In sheep, micro-implants of melatonin placed in the mediobasal hypothalamus (MBH) induce a complete spectrum of short-day responses, while surgical disconnection of the pituitary gland blocks all photoperiodic responses except for the regulation of prolactin. These observations support the 'dual-site hypothesis' that melatonin acts primarily in the MBH to control gonadotrophin secretion and the reproductive axis, but acts primarily in the pituitary gland via the pars tuberalis, to control prolactin secretion and the pelage axis. This differential regulation helps explains how prolactin can be 'the hormone of summer' in all photoperiodic ungulates irrespective of their seasonal breeding characteristics.  相似文献   

10.
Mechanisms differentiating diurnal from nocturnal species are thought to be innate components of the circadian timekeeping system and may be located downstream from the circadian pacemaker within the suprachiasmatic nucleus (SCN) of the hypothalamus. In the present study, we found that the dominant phase of behavioral activity and body temperature (Tb) is susceptible to modification by a specific modality of behavioral activity (wheel-running activity) in Octodon degus, a mammal that exhibits multiple chronotypes. Seven Octodon degus exhibited diurnal Tb and locomotor activity (LMA) circadian rhythms while entrained to a 24 h light/dark cycle (LD 12:12). When the diurnal animals were provided unrestricted access to a running wheel, the overt daily rhythms in these animals inverted to nocturnal. This nocturnal pattern was sustained in constant darkness and returned to diurnal after removal of the running wheel. Six additional animals exhibited nocturnal chronotypes in LD 12:12 regardless of access to running wheels. Wheel-running activity inverted the phase preference in the diurnal animals without changing the 24 hr mean LMA or Tb levels. Because wheel running did not increase the amplitude of the pre-existing diurnal pattern, simple masking effects on LMA and Tb cannot explain the rhythm inversion. The diurnal-nocturnal inversion occurred without reversing crepuscular-timed episodes of activity, suggesting that diurnal or nocturnal phase preference is controlled separately from the intrinsic timing mechanisms within the SCN and can be dependent on behavioral or environmental factors.  相似文献   

11.
The diurnal variations in the contents of nitric oxide (NO) and cyclic GMP were studied in the chick brain. NO and cyclic GMP contents in the chick brain were lower at night than during the day and were inversely correlated with high night-time tissue melatonin levels. Furthermore, when animals were kept in light at night, tissue melatonin levels remained at low diurnal values, whereas NO and cyclic GMP contents remained high. Since we have previously shown that physiological concentrations of melatonin inhibit nitric oxide synthase (NOS) activity in different brain areas, the nocturnal decrease in brain NO and cyclic GMP contents may be, in part, a consequence of the nocturnal inhibitory effect of melatonin on NOS activity.  相似文献   

12.
The endogenous circadian rhythm of melatonin in humans provides information regarding the resetting response of the human circadian timing system to changes in the light-dark (LD) cycle. Alterations in the LD cycle have both acute and chronic effects on the observed melatonin rhythm. Investigations to date have firmly established that the melatonin rhythm can be reentrained following an inversion of the LD cycle. Exposure to bright light and darkness given over a series of days can rapidly induce large-magnitude phase shifts of the melatonin rhythm. Even single pulses of bright light can shift the timing of the melatonin rhythm. Recent data have demonstrated that lower light intensities than originally believed are capable of resetting the melatonin rhythm and that stimulation of photopically sensitive photoreceptors (i.e., cones) is sufficient to reset the endogenous circadian melatonin rhythm. In addition to phase resetting, exposure to light of critical timing, strength, and duration can attenuate the amplitude of the endogenous circadian rhythm of melatonin. Measurement of melatonin throughout resetting trials provides a dynamic view of the resetting response of the human circadian pacemaker to light. Future studies of the melatonin rhythm in humans may further characterize the resetting response of the human circadian timing system to light.  相似文献   

13.
Exposure to a 50/60-Hz electromagnetic field can decrease the nocturnal production of melatonin in rodents. Melatonin is considered to be a marker of circadian rhythms, and abnormalities in its secretion are associated with clinical disorders, including fatigue, sleep disruption, mood swings, impaired performance, and depression, which are consequences of desynchronisation. Interestingly, some epidemiological studies have been reported finding most of these clinical disorders in individuals living or working in an environment exposed to electromagnetic fields. This experiment was designed to look for the possible effects of acute exposure (9 hours) to 50-Hz linearly polarized magnetic fields (10 mu T) on the pineal function. Thirty-two young men (20-30 years old) were divided into two groups (control group, i.e., sham-exposed: 16 subjects; exposed group: 16 subjects). All subjects participated in two 24-hour experiments to evaluate the effects of both continuous and intermittent exposure to linearly polarized magnetic fields. They were synchronized with a diurnal activity from 08:00 to 23:00 and nocturnal rest. The experiment lasted two months (mid-February to mid-April). The subjects were exposed to the magnetic fields (generated by three Helmholtz coils per bed) from 23:00 to 08:00, while lying down. Blood samples were collected during each session at 3-hour intervals from 11:00 to 20:00 and hourly from 22:00 to 08:00. Total urine was collected every 3 hours from 08:00 to 23:00 and once during the night, from 23:00 to 08:00. The levels of serum melatonin and its metabolite in urine (6-sulfatoxymelatonin) in exposed men did not differ significantly from those in control (sham-exposed) subjects. This study shows that nocturnal acute exposure to either continuous or intermittent 50-Hz linearly polarized magnetic fields of 10 mu T does not affect melatonin secretion in humans.  相似文献   

14.
Human well-being depends on the entrainment of endogenous circadian rhythms of biological functions and the sleep-wake rhythm. Although the incidence of otherwise healthy subjects with chronically altered sleep-wake rhythms is rather low, the investigation of these patients provides new sights into circadian entrainment mechanisms. We therefore examined the circadian rhythm of circulating melatonin and the sleep-wake rhythm in five patients with chronic sleep-wake rhythm disorders and ten age-matched healthy controls. All patients showed altered circadian melatonin rhythm parameters in relation to their sleep-wake cycle compared to age-matched controls. These alterations were random, i.e., independent of the type, the duration, and the age of onset of the disorder. The melatonin onset to sleep onset interval varied between the patients and the melatonin acrophase to sleep offset interval was prolonged in four patients. These findings indicate individual phase relations between the circadian melatonin rhythm and the sleep-wake cycle in patients with chronic sleep-wake rhythm disorders. Since the prolonged melatonin acrophase to sleep offset interval was the most consistent finding independent of aetiological origins, this abnormality may be one possible maintaining factor in chronic sleep-wake rhythm disorders due to reduced phase-resetting properties of the circadian pacemaker. Furthermore, rather low circadian melatonin amplitudes and a subsensitivity to daylight may maintain the disorder in at least some patients.  相似文献   

15.
Photic sensitivity of cells in the suprachiasmatic nuclei (SCN), the principal pacemaker of the mammalian circadian system, has been documented in several species. In nocturnal rodents, the majority of photically responsive SCN cells are activated by retinal illumination. One report identified mostly photic suppressions among SCN cells in a diurnal rodent, studied under somewhat different conditions. We examined photic sensitivity of SCN cells in a predominantly diurnal rodent, the degu, studied in vivo under identical conditions to rats, and found that a large majority of photic SCN cells were suppressed by light. In both rats and degus, SCN cells were more responsive to light during the subjective night than during the subjective day. Light-responsive cells did not show a daily rhythm in baseline firing rates in either species, but rat SCN cells that did not respond to light were more active spontaneously during the subjective day. Light-unresponsive SCN cells in degus did not show a similar pattern. There are substantial differences in the neurophysiological activity and photic responsiveness of SCN cells in diurnal degus and nocturnal rats.  相似文献   

16.
Free-running circadian rhythms in melatonin secretion persist in dissociated chick pineal cells. Calcium and cyclic AMP interact at several levels in the regulation of melatonin biosynthesis and secretion. Extracellular Ca2+ is required for optimal stimulation of melatonin secretion by cAMP analogues and protagonists. Increased Ca2+ influx during the circadian night is thought to play a role in the circadian clock regulation of melatonin secretion. We have recently described a nonselective cationic channel, ILOT, in chick pineal cells that is regulated by the intrinsic circadian oscillator. Active ILOT channels are detected only during the nighttime and may explain the nocturnal increase in Ca2+ influx. The mechanism by which the activity of ILOT is regulated by the circadian oscillator is not known. In the present study, the effect of the translational inhibitor anisomycin (10(-6) M) on the nighttime activity of ILOT channels was examined. The results show that protein synthesis is required for the detection of ILOT channel activity during the nighttime in cells maintained on light-dark cycles or constant dark conditions.  相似文献   

17.
These studies investigated the circadian effects of light and gamma aminobutyric acid-A (GABAA) receptor activation in the suprachiasmatic nucleus (SCN) of the diurnal unstriped Nile grass rat (Arvicanthis niloticus). Microinjection of the GABAA agonist muscimol into the SCN during the day produced phase shifts that were opposite in direction to those previously reported in nocturnal rodents. In addition, light had no significant effect on the magnitude of muscimol-induced phase delays during the daytime. Injection of muscimol during the night, however, significantly inhibited light-induced phase delays and advances in a manner similar to that previously reported in nocturnal rodents. Therefore, the circadian effects of GABAA receptor activation are similar in diurnal and nocturnal species during the night but differ significantly during the day. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
The present study investigated the relationship between the time of nocturnal onset of urinary 6-sulfatoxymelatonin (aMT6s) secretion, and the timing of the steepest increase in nocturnal sleepiness ("sleep gate"), as determined by an ultrashort sleep-wake cycle test (7 min sleep, 13 min wake). Twenty-nine men (mean age 23.8 +/- 2.7 years) participated. The ultrashort sleep-wake paradigm started at 0700 hr after a night of sleep deprivation and continued for 24 hr until 0700 hr the next day. Electrophysiological recordings were carried out during the 7-min sleep trials, which were then scored conventionally for sleep stages. Urinary aMT6s was measured every 2 hr. The results showed that the timing of the sleep gate was significantly correlated with the onset of aMT6s secretion. These results are discussed in light of the possible role of melatonin in sleep-wake regulation.  相似文献   

19.
A series of sleep deprivation (SD) experiments were performed to examine the relative influence of circadian and homeostatic factors on the timing of sleep in squirrel monkeys free-running in constant illumination. All SDs started at the beginning of subjective night and lasted 0, 1/4, 1/2, 1, 1 1/4, or 1 1/2 circadian cycles. These six lengths represented three pairs: (0.1), (1/4, 1 1/4), (1/2, 1 1/2). Within each pair, SD ended at the same circadian phase but differed by one circadian cycle in duration. Both before and after SD, consolidated sleep (CS) episodes occurred predominantly during subjective night, even after long SDs ending at the beginning of subjective day. CS duration was strongly influenced by circadian phase but had no overall correlation with prior wake duration. Sleep loss incurred during SDs longer than 1/4 cycle was only partially recovered over the next two circadian cycles, though total sleep duration was closer to baseline levels after the second circadian cycle after SD. There was a trend toward a positive correlation between prior wake duration and the amount of NREM and delta activity measures during subjective day. Delta activity was not increased in the first 2 hours of CS after the SD. Relatively high levels of delta activity occurred immediately after the SD ended and again at the time of baseline CS onset. These data indicate that the amount of sleep and delta activity after SD in squirrel monkeys is weakly dependent on prior wake duration. Circadian factors appear to dominate homeostatic processes in determining the timing, duration and content of sleep in these diurnal primates.  相似文献   

20.
This study aims to analyse a circadian rhythm of insulin secretion from isolated rat pancreatic islets in vitro and its potential modulation by melatonin, the concentrations of which change in vivo inversely to that of insulin. The circadian rhythm was evaluated in a perifusion system, adapted to the specific conditions of pancreatic islets. To determine rhythmicity of insulin secretion, 30-min fractions were collected continuously for investigative periods of 44 to 112 h. Insulin secretion in 10 experiments was analysed by using the MacAnova-program for period length (tau), the chi2-periodogram for test of significance (p < 0.001), and additionally the empirical cosine adaptation for amplitude and goodness-of-fit. Thereby a circadian pattern was observed with periods (tau) between 21.8 and 26.2 h. The period duration (mean +/- SEM) was 23.59 +/- 0.503 h, the overall mean insulin release 1038 +/- 13 pmol/l and the mean amplitude 88 +/- 17 pmol/l. Adding melatonin (10 nmol/l, t = 2 h) as a hormonal Zeitgeber during analysis of circadian insulin secretion phase-response studies show phase-shifts with approximately 9 h phase advance. Thereafter the circadian period was maintained, while the amplitude was enhanced. From this it is concluded that an endogenous circadian oscillator is located within the pancreatic islets of the rat that regulates circadian insulin secretion of the insulin-producing beta cells. The pacemaker is remarkably stable, because its periodicity is not affected by factors altering insulin secretion. In agreement with inhibitory influences of melatonin (range 0.5 nmol/l to 5 micromol/l) on the insulin response in vitro, the phase-responses support the contention that pancreatic beta cells may be targets for melatonin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号