首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用液压疲劳试验机,采用轴向应变控制方法在455℃下对2.25Cr1MoV钢进行高温低周疲劳试验,通过在峰值应变拉伸时保载0,60,600s,研究了拉伸保载时间对该钢低周疲劳行为的影响,并用扫描电镜对断口形貌进行了观察。结果表明:2.25Cr1MoV钢呈明显的循环软化特性,拉伸保载会明显降低循环应力幅,但保载时间对循环应力幅的影响不大;拉伸保载使该钢的疲劳寿命降低,但保载时间超过60s后,疲劳寿命基本不受保载时间的影响;拉伸保载没有改变试验钢的疲劳断裂模式。  相似文献   

2.
奥氏体不锈钢深冷容器室温应变强化技术   总被引:3,自引:2,他引:3  
随着低温液化气体的日益广泛应用,深冷容器的需求量不断增加。在安全的前提下,实现深冷容器的轻量化,对于节能降耗具有重要意义。采用室温应变强化技术可以提高奥氏体不锈钢的屈服强度,显著减薄奥氏体不锈钢制深冷容器的壁厚,减轻重量。中国、美国、德国、澳大利亚等已将该技术用于制造奥氏体不锈钢深冷容器。在简要介绍室温应变强化技术发展历史、标准和优点的基础上,着重分析讨论了该技术推广应用中遇到的常见问题。  相似文献   

3.
在550℃下对核电用316L不锈钢进行应变控制(应变幅在0.3%~1.2%)、应力控制(应力幅在230~300 MPa)低周疲劳试验和应变控制蠕变疲劳试验(3种波形,拉伸保载60,180,600 s,压缩保载60,180 s,拉压对称保载180 s),通过疲劳寿命、循环响应特征和应力-应变滞回曲线分析了不同控制模式下试验钢的疲劳变形行为;构建疲劳寿命预测模型,评估了Manson-Coffin-Basquin模型、SWT模型和能量法模型对不同控制模式下试验钢疲劳寿命的预测能力。结果表明:在不同控制模式的疲劳循环载荷下,316L不锈钢的循环应力响应均包括循环硬化、循环软化和失效断裂3个阶段;在低周疲劳试验中,疲劳寿命随应变幅或应力幅的增大而缩短;在蠕变疲劳试验中,疲劳寿命随拉伸保载时间的延长而缩短,随压缩保载时间的延长而增大,这与动态应变时效和蠕变对疲劳损伤的综合作用有关;在相同保载时间下,压缩保载下的疲劳寿命比拉伸保载下的短,这与不同加载方向引起的氧化层致裂机制有关。能量法模型对316L不锈钢在不同控制模式下的疲劳寿命预测精度最高,预测精度在1.5倍误差带以内,Manson-Coffin...  相似文献   

4.
应变强化控制系统是深冷容器应变强化的核心设备。运用模块化设计技术,在解决多线程控制、自适应智能变频控制、高精度便捷式测量、自主识别式软硬双重保护等关键技术的基础上,成功研发了基于互联网信息技术的深冷容器应变强化控制系统。工程应用表明:研发的应变强化系统具有自动化程度高、测试及控制精度好、操作灵活、可维护性及安全性好等优点,满足国家对应变强化深冷容器制造信息公共服务平台稳定可靠对接的要求,具有推广应用价值。  相似文献   

5.
随着低温液化气体的日益广泛应用,深冷容器的需求量不断增加。在保证安全的前提下,实现深冷容器的轻量化,对于降低制造成本具有重要意义。采用室温应变强化技术可以提高奥氏体不锈钢的屈服强度,显著减薄奥氏体不锈钢制深冷容器的壁厚,减轻重量。试验测定了304不锈钢应变强化效应,并采用常规设计、分析设计和极限分析三种不同的方法,对相同设计参数的304不锈钢制低温储罐内筒进行强度设计,发现应变强化后材料的屈服强度显著提高。若考虑应变强化,按常规设计内筒柱壳厚度可降低50%,按分析设计可降低45%,而按极限分析,承载能力可提高139%。  相似文献   

6.
粉末冶金FGH96镍基高温合金的蠕变-疲劳交互行为   总被引:1,自引:0,他引:1  
对国产粉末冶金FGH96镍基高温合金在650℃总应变控制下进行了无保载疲劳试验以及最大拉/压应变保载蠕变-疲劳试验,研究了其失效寿命及失效模式,并与铸造GH4169镍基高温合金的失效寿命进行了对比。结果表明:保载的引入降低了FGH96高温合金的失效寿命,与最大拉应变保载相比,最大压应变保载时产生的蠕变损伤更大,失效寿命更短;FGH96高温合金的疲劳失效寿命基本上高于GH4169高温合金的,但是较高应变幅下(大于1.4%)的蠕变-疲劳失效寿命低于GH4169高温合金的,在较低应变幅下(小于1.4%)则相反;FGH96高温合金的疲劳断口和蠕变-疲劳断口均呈现出表面或近表面多裂纹源失效特征。  相似文献   

7.
室温应变强化技术可显著提高奥氏体不锈钢的屈服强度,降低奥氏体不锈钢制深冷容器内容器的壁厚,是一种省材节能的绿色制造技术。目前,包括中国在内的多个国家和地区已将该技术用于奥氏体不锈钢制深冷容器的制造。中国采用室温应变强化技术的时间相对较短,在实施过程中提出了一些新的技术问题。本文结合近些年的研究成果和实践,从材料、设计、制造和检验等方面,对奥氏体不锈钢制深冷容器室温应变强化技术的常见问题进行了探讨,并提出了若干建议。  相似文献   

8.
根据弹性失效准则,通过计算设计了深海超高压环境下的保压容器的筒体及端盖连接方式,利用Pro E软件建立了保压容器的三维模型,并将其导入ANSYS Workbench中。通过建立保压容器的有限元分析模型,并将超高压环境边界条件添加至有限元模型中,从而验证保压容器的强度特性。分析结果表明:在文中提到的压力条件下,保压容器的应力应变均较小,最大应力应变区域出现在挡环的外径靠近高压一侧的角部,最大应力在许用应力范围内,设计安全可靠。  相似文献   

9.
室温应变强化技术可大幅提高奥氏体不锈钢的屈服强度,显著减薄容器壁厚,已广泛应用于奥氏体不锈钢深冷容器制造。采用金相显微镜、X射线衍射仪(XRD)、透射电子显微镜(TEM)和摆锤式冲击试验机研究应变强化对S30408奥氏体不锈钢低温冲击性能的影响。结果表明:材料在应变强化过程中发生应变诱发相变,相变产物为α'和ε马氏体,深冷低温对应变强化材料的相组成和含量影响不大。随着应变量的增加和温度的降低,材料冲击吸收能量KV2降低,其中裂纹扩展能EP基本不变,裂纹形成能Ei显示与总冲击吸收能量相似的变化趋势。当温度低于77 K,冲击吸收能量下降趋于平缓,呈现出"平台"现象,且应变强化对材料低温冲击性能的影响要大于温度对其的影响。即使经过15%应变量,材料仍表现出较好的低温冲击韧性。  相似文献   

10.
曹宇  崔鑫  纪冬梅 《机械工程材料》2021,45(10):50-57,65
对P92钢在600℃下进行应力和应变控制的蠕变-疲劳试验,分析了载荷水平、保载时间对蠕变-疲劳损伤的影响;结合应力控制下的蠕变-疲劳试验数据,在黏塑性统一本构理论框架下引入修正的Chaboche非线性随动硬化率及蠕变应变并考虑损伤演化规律,构建了基于Chaboche理论的耦合蠕变-疲劳损伤本构模型,模拟了P92钢的蠕变-疲劳循环曲线.结果表明:P92钢在600℃下表现为循环软化特性;在应力控制下,P92钢高位保载的损伤与平均应力呈正相关,而低位保载的损伤与平均应力呈负相关;在应变控制下,P92钢产生应力松弛行为,保载时间越长,应力松驰越明显;建立的蠕变-疲劳损伤本构模型可以较好地模拟P92钢的循环特性,对于蠕变-疲劳过程中应力模拟的最大相对误差为7.30%.  相似文献   

11.
为研究保载时间对蠕变-疲劳寿命和应力-应变响应的影响规律,对P92钢在650℃下进行了应变幅为±0.5%,保载时间为36,600,3600 s的蠕变-疲劳试验,采用Chaboche塑性本构模型和应变强化蠕变模型进行有限元模拟,并对P92钢断裂试样进行透射电镜检测.试验结果表明:保载时间增长导致拉压屈服极限降低,最大拉应...  相似文献   

12.
韩豫  王可胜  陈晓平  张柱 《中国机械工程》2014,25(24):3359-3364
根据欧盟EN 13458-2: 2002中关于奥氏体不锈钢制压力容器应变强化标准确定了材料的许用应力,设计并制造了奥氏体不锈钢制试验容器,合理制定了焊接工艺并对容器焊缝进行了射线和渗透检测,所有焊缝质量均达到Ⅰ级合格。通过自行开发的精确自动加压设备对试验容器实施应变强化工艺,通过测量应变强化后容器周长变化量来计算强化容器的永久变形量,并与理论值进行了比较,两者吻合较好。对应变强化容器进行了爆破试验,以确定其爆破压力和爆破部位,并测量容器启裂部位的周长变化量和壁厚减薄量,检验强化容器的塑性储备。探究了应变强化容器极限承载压力和爆破安全系数并讨论了其安全性。  相似文献   

13.
ASME Code Case 2596针对奥氏体不锈钢应变强化的容器,要求保压阶段最大环向应变速率小于0.1%/h。研究了相关测试方法,并针对某应变强化容器,研究了在最大变形截面采用应变片测量其应变率的方法,并与传统的卷尺测量方法进行了对比分析。研究表明,在保压阶段采用贴应变片技术对应变速率测量,在技术上是可行的。  相似文献   

14.
韩豫  周微  徐晔  王可胜  王成军 《机械强度》2022,44(2):409-415
在对常规压力容器实施应变强化工艺过程中,容器将经历弹性变形和塑性变形两个阶段.当容器发生塑性变形时,其变形量对压力的响应较为敏感,因而合理控制容器的变形量是实施应变强化工艺的关键环节之一.在压力容器主要部位粘贴电阻应变计,测定相应部位的弹性变形量与逐级施加的应变强化压力之间的关系,并将得到的变形量数据作为后续验证有限元...  相似文献   

15.
周连东  江楠 《压力容器》2011,28(6):11-15,23
弹塑性有限元分析需要材料的真实应力—应变曲线,但利用ASME中的应变强化本构模型,按标准保证值和实测值分别建立的ASME真实应力—应变曲线存在较大的差异。运用ANSYS有限元软件模拟同一个1.4301奥氏体不锈钢压力容器模型在这两种材料参数下筒体应力、应变以及爆破压力的差异,并将模拟结果与试验结果对比。同时利用有限元模拟和爆破试验的爆破压力结果,分析奥氏体不锈钢应变强化压力容器在不同预应变下的安全裕度和实际安全裕度。结果表明:按保证值材料参数设计的压力容器,容器的实际塑性应变要比理论值小很多,用实测值材料参数设计大变形压力容器时应严格控制实际的应变值;应变强化压力容器的理论设计应变可达10%,但实际应变应在5%左右,容器才具有足够的安全裕度。  相似文献   

16.
针对现有标准没有对应变强化奥氏体不锈钢弯曲试验时弯曲压头直径选取做出统一规定的现状,通过试验和有限元模拟的方式,结合当前应变强化奥氏体不锈钢深冷容器用S30408断后伸长率值,探讨S30408母材(包括未预拉伸和预拉伸9%材料)弯曲压头直径的选取,并建议取消S30408母材弯曲试验。  相似文献   

17.
在620℃下对X12CrMoWVNbN10-1-1钢进行不同应力比(0.2~0.4)和保载时间(0.3~1.5 h)下的载荷控制的高位保载蠕变-疲劳试验,对其蠕变-疲劳交互作用及断裂机理进行了分析。结果表明:试验钢的蠕变-疲劳寿命与保载时间呈指数关系,保载时间越长,应力比对蠕变-疲劳寿命的影响越小;从应变角度定义的蠕变-疲劳交互作用因子能够很好地反映稳定阶段的真应力-真应变迟滞回线与蠕变-疲劳寿命的相互作用;试验钢的蠕变-疲劳断裂模式为韧性断裂;当保载时间较短(0.3,0.5 h)时,疲劳损伤抑制蠕变损伤,损伤主要受循环中的疲劳载荷控制,断口中韧窝由疲劳主导作用下的晶界滑移变形引起;当保载时间较长(1.0,1.5 h)时,疲劳损伤促进蠕变损伤,损伤主要受与时间有关的蠕变载荷控制,断口中韧窝由夹杂物或第二相颗粒脱落所致。  相似文献   

18.
杨建涛 《中国机械》2014,(7):190-190
不同的预应变量能够对试件和压力容器产生一定的影响,使之产生不同程度的塑性变形,但是,材料本身的强化效应能够在一定程度上弥补试件和压力容器的塑性变形,降低容器塑性失稳状态下的载荷。对径比为1.02到1.10范围内的容器,预变后容器的塑性失稳压力的影响甚小。同时考虑容器的塑性变形以及材料的强化效应的改变情况,大约4%到12%的试件和容器的最小安全裕度会有常规的4.76降低到2.21。本次研究得到的最小安全裕度和国外相关的标准一致,这说明应变强化对压力容器安全裕度有较高的影响。  相似文献   

19.
与采用常规技术设计和制造深冷压力容器相比,采用应变强化技术设计和制造深冷压力容器能节省30%~45%的材料。深冷压力容器轻量化是提高企业市场竞争力的核心技术。通过统计和分析珠海森铂低温能源装备有限公司生产的深冷压力容器变形率数据,进一步优化深冷压力容器设计,有助于应变强化技术在深冷压力容器生产中的工程应用。  相似文献   

20.
任丽萍 《中国机械》2014,(4):129-130
本文通过试件拉伸试验和圆筒容器的有限元模拟方法,探究加载路径和预应变量两个元素对应变强化容器塑性的失稳压力的影响。结果显示:加载路径这一元素试件以及圆筒容器的极限承载能力具有较小的影响。对壁厚为1.02到1.10范围内的容器,壁厚对预变后容器的塑性失稳压力的影响甚小。同时考虑容器的塑性变形以及材料的强化效应的改变情况,大约4%到12%的试件和容器的最小安全裕度会有常规的4.76降低到2.21。本次研究得到的最小安全裕度和国外相关的标准一致,这说明应变强化后容器仍然具有相对较高的安全裕度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号