首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
依据交叉型微流道的结构设计要求,分析了金刚石磨粒排布方式对交叉微流道形成规律的影响。仿真了固定磨粒研磨加工轨迹的均匀性,计算了不同磨粒排布方式下加工轨迹线形成的微流道分形维数,得到了被加工工件表面的宏观和微观开孔率。综合对比了不同磨粒排布方式对轨迹均匀性、分形维数和开孔率的影响,获得了最佳的金刚石磨粒螺旋排布方式。  相似文献   

2.
固结磨料研磨过程中磨料的微破碎是实现固结磨料垫自修正特性的主要途径,研磨压力是影响磨粒微破碎的关键参数。选用单晶金刚石和聚集体金刚石作为磨粒制备固结磨料垫,在15 kPa压力下以石英玻璃为加工对象进行研磨实验,比较两者的材料去除率及加工稳定性;制备了4种陶瓷结合剂含量的聚集体金刚石,并制备成固结聚集体金刚石磨料垫,探索了不同压力下的固结聚集体金刚石磨料垫的自修正性能;分析了研磨后的工件表面粗糙度和表面微观形貌。结果表明:采用固结聚集体金刚石磨料垫,研磨后工件表面粗糙度低,去除效率稳定;在15~21 kPa的压力下,结合剂含量次高的聚集体金刚石研磨效率高,材料去除率达到8.94~12.43μm/min,加工性能较稳定,研磨后的工件表面粗糙度R a在60 nm左右;在3.5~7 kPa压力下,结合剂含量次低的聚集体金刚石研磨性能较稳定,材料去除率在2.67~3.12μm/min,研磨后的表面粗糙度R a在40 nm左右。高结合剂含量的聚集体金刚石磨粒更适合高研磨压力条件,而低结合剂的聚集体金刚石磨粒更适合于低研磨压力。  相似文献   

3.
硬盘巨磁电阻磁头的超精密抛光工艺   总被引:1,自引:0,他引:1  
申儒林 《中国机械工程》2007,18(18):2241-2245
硬盘巨磁电阻磁头的抛光可分为自由磨粒抛光和纳米研磨,在自由磨粒抛光中,精确控制载荷和金刚石磨粒的粒径,可以避免脆性去除实现延性去除。通过控制抛光过程中的抛光盘表面粗糙度、金刚石粒径大小及粒径分布和载荷等进行滚动磨粒和滑动磨粒比例的调控,获得较好的磁头表面质量和较高的材料去除率。在自由磨粒抛光阶段,先采用铅磨盘抛光,然后用锡磨盘抛光,以纳米研磨作为最后一道抛光工序对磁头表面进行研磨,获得了亚纳米级粗糙度的磁头表面。用两种工艺制作的纳米研磨盘进行加工,分别获得了0.37nm和0.8nm的磁头表面粗糙度,去除率分别为5.3 nm/min和3.9nm/min。  相似文献   

4.
This paper presented a fundamental investigation of the surface formation mechanisms involved in rotary ultrasonic machining (RUM) of glass BK7 process. Comparative observations of the scratches, generated in the scratching tests with and without ultrasonic, were performed using optical microscopy, white-light interferometer, and scanning electron microscopy (SEM). Giving consideration to the scratch morphologies and the abrasive process kinematics, the mechanisms of surface formation provoked by the ultrasonic superposition were investigated. Additionally, the formal machining tests with and without ultrasonic were also conducted to validate these surface formation mechanisms. As a result, a nondimensional parameter K was proposed to quantitatively describe the ultrasonic effects of the abrasives as well as to correlate these effects with the machining conditions. Due to the periodic variation in the effective work angle of the abrasive, the material accumulated slightly at the RUM groove entrance, whereas serious material accumulation appeared at the exit. The stress imbalance on the specimen surface induced by the dramatic fluctuation of the abrasive inertia load caused plenty of tortuous cracks in 0.2 μm-sized length emerge on the RUM grooves generated in the ductile material removal stage. A novel theoretical model of the surface formation mechanisms involved in formal RUM process was established by incorporating the ultrasonic effects, such as the lower dynamic fracture toughness of material, cyclical variation in the effective work angle of the abrasive, and the larger abrasive inertia force. Experimental results obtained in formal machining tests revealed that superimposing an ultrasonic vibration could distinctly reduce the cutting force of the diamond tool without seriously worsening the surface quality of the specimens.  相似文献   

5.
We have investigated the cutting forces, the tool wear and the surface finish obtained in high speed diamond turning and milling of OFHC copper, brass CuZn39Pb3, aluminum AlMg5, and electroless nickel. In face turning experiments with constant material removal rate the cutting forces were recorded as a function of cutting speed between vc = 150 m/min and 4500 m/min revealing a transition to adiabatic shearing which is supported by FEM simulations of the cutting process. Fly-cutting experiments carried out at low (vc = 380 m/min) and at high cutting speed (vc = 3800 m/min) showed that the rate of abrasive wear of the cutting edge is significantly higher at ordinary cutting speed than at high cutting speed in contrast to the experience made in conventional machining. Furthermore, it was found that the rate of chemically induced tool wear in diamond milling of steel is decreasing with decreasing tool engagement time per revolution. High speed diamond machining may also yield an improved surface roughness which was confirmed by comparing the step heights at grain boundaries obtained in diamond milling of OFHC copper and brass CuZn39Pb3 at low (vc = 100 m/min) and high cutting speed (vc = 2000 m/min). Thus, high speed diamond machining offers several advantages, let alone a major reduction of machining time.  相似文献   

6.
将3种不同直径的氮化硅球坯采用循环加工方法研磨成G5级轴承用陶瓷球。研究了研磨过程中陶瓷球的磨损行为并将磨损缺陷按光学显微镜下的形貌分成5类。采用扫描电子显微镜观察分析各种缺陷并用陶瓷材料断裂力学解释凹坑与裂纹缺陷的形成。研究结果表明,异常的磨粒作为尖锐压头产生凹坑。各种裂纹主要是由起钝压头作用的上研磨盘产生的。材料的晶体结构变化产生雪花缺陷,雪花缺陷抵抗磨粒磨损的能力较差。精研过程中不正确的加工压力和没有破碎的硬磨粒产生擦伤和划痕缺陷。提高球坯圆度,降低粗研加工的载荷和速度可以减少裂纹缺陷。提高磨粒质量可以减少精研中各种机械加工缺陷。  相似文献   

7.
A resin-bonded ultra-fine diamond abrasive polishing tool is fabricated by electrophoretic co-deposition (EPcD), and the processing performance of the tool is evaluated in this study. The dispersion stability of suspensions is characterized by a laser particle size analyzer and settlement ratio. The cathodic EPcD of composite powder is realized by adding Al3+ into the suspension. The sintering temperature of composite coatings is determined by differential thermal analysis/thermogravimetry. The surface morphology of the composite coating is observed under a confocal microscope. Results show that uniform, dense, and smooth coatings with diamond and resin particles distributed homogeneously are obtained from the steel substrate. A large (Φ150 mm) polishing tool with a 20 μm-thick coating is successfully prepared using the above process. A smooth mirror surface of SiC wafer with a nanoscale roughness (4.3 nm) is achieved after processing with the ultra-fine diamond abrasive polishing tool.  相似文献   

8.
针对传统半固结研磨盘由于盘面较软使得加工衬底面形精度难以保证的问题,提出一种蜂窝状结构的半固结磨料研磨盘的设计与制备方法。该研磨盘采用环氧树脂蜂窝结构作为支撑“骨架”,减小研磨盘的变形,以保证研磨衬底的面形精度,同时采用含有金刚石磨粒的凝胶体作为半固结研磨介质实现对衬底的研磨加工,获得了较好的衬底表面质量。基于该原理制备了一套新型研磨盘,并用于蓝宝石衬底的双面研磨加工。试验结果表明,研磨后衬底表面粗糙度较小,表面划痕和裂纹少,能够获得较好的表面质量;相应地,研磨后蓝宝石衬底的面形精度不仅没有变差,反而得到很大的改善,研磨后衬底的翘曲度、弯曲度和总厚度偏差均大幅减小。另外,研磨效率也相对较高,材料去除率可达0.3~0.4 μm/min。试验结果证明了该新型结构研磨盘不仅可以获得较好的表面质量和较高的研磨效率,同时还可提高衬底的面形精度,可用于面形精度要求较高的薄片衬底零件的精密研磨加工。  相似文献   

9.
蓝宝石衬底研磨加工中研磨盘材质的影响   总被引:2,自引:0,他引:2  
采用W14、W3.5的B4C磨粒对蓝宝石衬底进行粗研磨和精密研磨的试验研究.对比分析铸铁、合成铜和合成锡盘粗研磨蓝宝石衬底的表面粗糙度和研磨表面均匀性,试验结果表明,铸铁研磨盘获得的蓝宝石衬底宏观表面均匀性和平面度均优于合成铜盘和合成锡盘,经铸铁研磨盘加工后的蓝宝石衬底面型峰谷值误差小于5 μm、中心线平均表面粗糙度Ra<0.82 μm.精密研磨试验结果表明,采用合成铜盘和W3.5B4C磨粒有效地改善了蓝宝石衬底表面的均匀性,获得了Ra<20 nm、面型峰谷值误差小于1.6 μm的均匀表面,为蓝宝石的超精密研磨奠定了良好的基础.  相似文献   

10.
表面粗糙度模型是研磨过程设计和工艺参数选择的重要依据,K9玻璃是应用最广泛的光学材料之一。建立研磨K9玻璃表面粗糙度模型有利于提高加工效率、节约生产成本。简化固结磨料研磨过程,基于研磨垫表面微结构,计算研磨过程中参与研磨的有效磨粒数和单颗磨粒切入工件深度,利用研磨过程中受力平衡,建立固结磨料研磨K9玻璃表面粗糙度模型。采用不同磨粒粒径和不同磨料浓度的固结磨料研磨垫以及不同压力研磨K9玻璃验证表面粗糙度模型。结果表明:固结磨料研磨K9玻璃的表面粗糙度与磨粒粒径、研磨压力1/3次方成正比,与研磨垫浓度2/9次方成反比。表面粗糙度理论值与试验值随研磨压力、磨粒粒径和研磨垫浓度的变化趋势吻合。利用该模型能够成功预测固结磨料研磨K9玻璃表面粗糙度,指导研磨过程设计及加工过程中研磨垫和工艺参数的选择,可靠性高。  相似文献   

11.
固着磨料加工碳化硅反射镜的实验   总被引:2,自引:2,他引:0  
考虑固着磨料加工工艺其固着磨料与工件相对运动关系固定,有利于精确加工,提出了采用该工艺加工碳化硅反射镜的方法,利用大颗粒金刚石磨料快速加工出了较好的镜面质量.在工艺实验中,分别测得了W7,W5,W3.5,W1.5 固着磨料丸片在特定转速和压力下对碳化硅材料的去除特性.对多组去除量曲线的分析表明,此工艺不仅有着较高的去除率,而且稳定性良好.对表面粗糙度测量的结果表明,使用W7丸片即可获得粗糙度为42.758 am rms的镜面.减小所用丸片的粒度,工件表面粗糙度随之减小,使用WI.5丸片抛光后,最终获得了粗糙度为1.591 nm rms的光滑镜面.实验结果表明,固着磨料加工碳化硅反射镜工艺在粗研、精研、粗抛等加工阶段内可以取代传统的散粒磨料加工工艺.  相似文献   

12.
We have studied the effects of using water containing micro–nano-bubbles (MNB water) as the solution in which the diamond abrasives with a mean diameter of 0.5 μm are dispersed for the polishing slurry used in the precise mechanical polishing (PMP) of brittle material of GaN. While the formation of small number of clusters of abrasives was seen in the MNB water, the abrasives were basically well dispersed, which were almost comparable to that in pure water with a dispersion agent such as ethylene glycol. Since flocculation was observed for dispersion in pure-water without the addition of the dispersion agent, it was found that MNBs have dispersion effect for micro-sized abrasive particles. Regarding the polishing properties of GaN substrate with the MNB water based polishing slurry, we observed a remarkable increase in the removal rate with no additional surface or subsurface degradation. Additionally, we observed a significantly reduced subsurface damage (SSD) for chemically weak N-face of GaN substrate. It was suggested that these observed effects were most probably a result of the cluster formation in the MNB water and the chemical effect in relation to high energy generation through bubble collapse, respectively.  相似文献   

13.
Single-sided lapping is crucial in sapphire wafering processes for improving flatness and achieving the target wafer thickness using loose abrasives. In single-sided lapping process, the Material removal rate (MRR) is a key factor for reducing process time and cost. However, the MRR is limited when using loose abrasives because abrasives mostly act by rolling and sliding. Many researchers have studied fixed abrasives to increase the MRR, but the MRR decreases with time. To solve this problem, the self-dressing effect was studied with various pressures, velocities, cutting fluids and wafers. The MRR decreased due to the wear of abrasives, and the pressure and velocity have little effect on the self-dressing. Lapping experiments were done using cutting fluid with a lapped wafer and sawed wafer. The MRR, plate roughness and thickness were measured to study the wear of the abrasive and the self-dressing effect. The cutting fluid delayed the wear of the abrasives and thus improved the decrease in MRR, but it had little effect on the self-dressing effect, like in the case when water was used. When using cutting fluid and a sawed wafer, the MRR was high and did not decrease. A concentrated load on the plate caused by shape error and saw marks on the sawed wafer could produce the self-dressing effect. We verified that a sawed wafer could produce the self-dressing effect on even a worn plate.  相似文献   

14.
Lapping and electropolishing (EP) experiments for tungsten carbide blocks were executed. The effectiveness of the lapping experiment is evaluated in terms of the material removal rate, the surface roughness, and wear of the workpiece. The material removal rate describes the thickness removal of the workpiece under a fixed surface area. Wear describes a microscopic study of the wear track. The results show that the material removal and surface roughness increase as the grain size of the abrasive increases. Four main wear mechanisms -- abrasive wear, fracture, adhesive wear and scratch -- are observed during the lapping of tungsten carbide using silicon carbide abrasive. In the electropolishing experiment, four different machining characteristics -- sub-electropolishing, crack, electropolishing, and pitting -- can be analyzed as the applied current is increased. Although material removal is close to Faraday’s law during electropolishing, it disagrees with Faraday’s law after 400 s of sub-electropolishing.  相似文献   

15.
Some soil-burrowing animals and other biological organisms living in contact with abrasive materials have surfaces optimized for reducing drag and wear. In this study, bio-inspired embossed surfaces consisting of an array of convex domes are investigated to quantify their abrasive wear resistance properties. The experimental procedure proposed in this work is based on sliding seven different embossed surface specimens against an abrasive material for distances up to 3948.9 m with sliding velocities up to 3.02 m/s. The seven specimens consist of 20 mm-wide convex domes made of bakelite and calcium carbonate fixed to flat steel substrates. Quartz sand particles having three different sizes are used as abrasive material for the tests. Experimental results are analyzed and guidelines for designing embossed surfaces, which are optimized to minimize abrasive wear, are proposed.  相似文献   

16.
电梯轿壁研磨用半固着磨具的特性参数研究   总被引:1,自引:1,他引:0  
电梯轿厢内壁不锈钢的镜面加工一直是个难题,而本文的半固着磨具能很好的解决以上问题,为了合理评价半固着磨具特性及进一步了解半固着磨具的研磨过程,并用以指导磨具制造,本文选择半固着磨具的主要特性参数:磨具的硬度、压缩比、回弹率、抗剪强度等作为研究对象。研究磨具特性参数对研究该磨具对工件的研磨规律、优化磨具制造配方等具有重要的意义。试验之前选择5种不同浓度的胶粘剂制造了相应的半固着磨具。研究结果表明,随着磨具胶粘剂浓度的增加,磨具硬度,抗剪强度和回弹率增加,而压缩比减少。  相似文献   

17.
碳化硼研磨后蓝宝石晶体的亚表面损伤   总被引:1,自引:0,他引:1  
谢春  汪家林  唐慧丽 《光学精密工程》2017,25(12):3070-3078
介绍了蓝宝石材料的亚表面损伤形成机制。考虑碳化硼磨料可产生较小亚表面损伤的优点,本文基于游离磨料研磨方式,研究了不同粒度碳化硼磨料研磨后蓝宝石晶体的亚表面损伤。利用KOH化学腐蚀处理技术,对研磨后的样品进行了刻蚀;通过特定的腐蚀坑图像间接反映了蓝宝石晶体的亚表面损伤形貌特征,获得了W20、W10和W5碳化硼磨料产生的亚表面损伤深度,得到了在不同刻蚀时间下蓝宝石亚表面损伤形貌、表面粗糙度和刻蚀速率。研究结果显示:游离碳化硼磨料研磨造成的蓝宝石晶体的亚表面损伤密度相当显著,但损伤深度并不大,其随磨料粒度的增大而增大,W20、W10和W5粒度的磨料研磨后产生的亚表面损伤深度分别为7.4,4.1和2.9μm,约为磨料粒度的1/2。得到的结果表明采用碳化硼磨料研磨有利于获得低亚表面损伤的蓝宝石晶片,而采用由大到小的磨料逐次研磨可以快速获得低亚表面损伤的蓝宝石晶片。  相似文献   

18.
In machining of pieces that require surface finishing levels finer than grinding can offer, it is necessary to use specific finishing processes. However, these processes, which have lapping as the most classic representative, are usually difficult to setup and demand much time in setting the large number of variables. This paper discusses the investigation of an abrasive process for finishing of flat workpieces based on the combination of important grinding and lapping characteristics. Instead of loosing abrasive grains between the workpiece and the lapping plate, a resinoid grinding wheel of hot-pressed silicon carbide is fixed on the plate of a device resembling to a lapping machine. The grinding wheel is dressed with a single-point diamond for maintaining its form flat and mainly for interfering in the workpieces surface finishing by varying of the overlap factor (Ud). It was noticed that the studied process can simplify the setup and make it easier than in lapping, which is a painstaking process. The surface roughness values and flatness deviations showed to be comparable to those achieved in lapping, or even better. The best surface roughness and flatness deviation found were Ra = 0.8 nm and 0.4 μm with Ud = 3, respectively. The workpiece material was made of quenched and tempered SAE 4340 steel, reaching a hardness of 60 HRC. The process was also monitored by acoustic emission (AE), which indicates to be a promising and suitable technique to be used in this process. Compared to lapping, there is an additional advantage of a less contaminated workpiece surface with a shiny appearance.  相似文献   

19.
Micro holes with internal features are widely used as spray holes and cooling holes nowadays, which are usually required to be with high aspect ratio and shape accuracy, as well as good surface quality. An electrochemical machining (ECM) process is presented to machine these micro holes with diameter <200 μm. A quantitative relation between micro-hole diameter and machining parameters including voltage, duty ratio and feedrate is obtained through orthogonal experiments. According to the designed shape of internal features, change rules of machining parameters for varied diameters in different depth are obtained, and then micro holes with internal features are shaped precisely. Taking reverse tapered hole as an example, ECM experiments by varying parameters of voltage, duty ratio and feedrate (called varying voltage machining, varying duty ratio machining and varying feedrate machining, respectively) are carried out. Micro holes with inlet diameter of 178 μm and taper angle of 1.05° are shaped on a 1.0 mm-thick workpiece of 18CrNi8. The deviation of inlet is <3 μm and the taper-angle error is <0.1° in varying voltage machining. The corresponding dimensional accuracy of taper angle is improved by 51% than that of varying duty ratio machining under the same efficiency. The machining efficiency of varying voltage machining is increased by 36% compared to the efficiency in varying feedrate machining. In addition, the micro holes with complex features of funnel shape and bamboo shape are machined.  相似文献   

20.
Magnetorheological finishing (MRF) utilizes magnetorheological (MR) fluid, which consists of magnetic particles, nonmagnetic abrasives, and some additives in water or other carrier to polish the materials. An experimental study is conducted to predict the effect of process parameters (concentration of magnetic particles and abrasive particles, carrier wheel speed, and initial surface roughness) on surface finish and material removal rate in MRF of single crystal silicon blank. The final surface roughness value in terms of arithmetical mean roughness (Ra) obtained is as low as 8 nm from the initial value of 1300 nm. An optimization study is also carried out to find optimum values of process parameters from the selected range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号