首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, we study the leader-following consensus problem of general linear multi-agent systems under directed communication topology. To avoid using any global information, an adaptive nonlinear protocol is proposed based only on the relative state information. It is proved that, for any directed communication graph that contains a spanning tree with the root node being the leader agent, the proposed control law solves the leader-following consensus problem. A numerical example is provided to illustrate the effectiveness of the theoretical results.  相似文献   

2.
This paper addresses the distributed leader-following consensus control of second-order strict-feedback nonlinear multi-agent systems. By employing mean value theorem, variable separation technique, and backstepping methodology, a fully distributed adaptive control law is designed using only local relative state information. The proposed control law solves the leader-following consensus problem for any directed communication graph that contains a spanning tree with the root node being the leader agent. The application to hovercraft slew rate control system is given to verify the effectiveness of the theoretical results.  相似文献   

3.
In this paper, we study the robust leader-following consensus problem for a class of multi-agent systems with unknown nonlinear dynamics and unknown but bounded disturbances. The control input of the leader agent is nonzero and not available to any follower agent. We first consider a class of high order chain integrator-type multi-agent systems. By employing the robust integral of the sign of the error technique, a continuous distributed control law is constructed using local information obtained from neighboring agents. Using Lyapunov analysis theory, we show that under a connected undirected information communication topology, the proposed protocol achieves semiglobal leader-following consensus. We then extend the approach to a class of more general uncertain multiagent systems. A numerical example is given to verify our proposed protocol.   相似文献   

4.
This paper addresses the consensus problem of leader-following nonlinear multi-agent systems with iterative learning control. The assumption that only a small portion of following agents can receive the information of leader agent is considered. To approximate the nonlinear dynamics of a given system, the radial basis function neural network is introduced. Then, a distributed adaptive iterative learning control protocol with an auxiliary control term is designed, where the estimates of nonlinear dynamics are applied in control protocol design and three adaptive laws are presented. Furthermore, the convergence of the proposed control protocol is analysed by Lyapunov stability theory. Finally, a simulation example is provided to demonstrate the validity of theoretical results.  相似文献   

5.

The leader-following consensus problem for a class of second-order nonlinear multi-agent systems under Markovian switching topologies is studied. First, a discontinuous distributed adaptive nonlinear control law using the relative state information between neighboring agents is designed for heterogeneous multi-agent systems, which achieves almost sure leader-following consensus for the closed-loop system. Then, a smooth distributed control law is designed for homogeneous multi-agent systems. Compared with previous results, the nonlinear functions are not required to satisfy the globally Lipschitz condition and the adaptive consensus protocol is in a distributed fashion, i.e., using only the relative information. A practical example of ship course control system and simulation are provided to demonstrate the effectiveness of the control scheme.

  相似文献   

6.
This paper focuses on the leader-following consensus control problem of stochastic multi-agent systems with hysteresis inputs and nonlinear dynamics. A leader-following consensus scheme is presented for stochastic multi-agent systems directions under directed graphs, which can achieve predefined synchronisation error bounds. By mainly activating an auxiliary robust control component for pulling back the transient escaped from the neural active region, a multi-switching robust neuro adaptive controller in the neural approximation domain, which can achieve globally uniformly ultimately bounded tracking stability of multi-agent systems recently. A specific Nussbaum-type function is introduced to solve the problem of unknown control directions. Using a dynamic surface control technique, distributed consensus controllers are developed to guarantee that the outputs of all followers synchronise with that of the leader with prescribed performance. Based on Lyapunov stability theory, it is proved that all signals in closed-loop systems are uniformly ultimately bounded and all the follower agents can keep consensus with the leader. Two simulation examples are provided to illustrate the effectiveness and advantage of the proposed control scheme.  相似文献   

7.
This paper is concerned with the finite-time consensus problem of distributed agents having non-identical unknown nonlinear dynamics, to a leader agent that also has unknown nonlinear control input signal. By parameterization of unknown nonlinear dynamics, a Lyapunov technique in conjunction with homogeneity technique is presented for designing a decentralized adaptive finite-time consensus control protocol in undirected networks. Homogeneous Lyapunov functions and homogeneous vector fields are introduced in the stability analysis although the whole system is not homogeneous. Theoretical analysis shows that leader-following consensus can be achieved in finite-time, meanwhile, finite-time parameter convergence can be also guaranteed under the proposed control scheme. An example is given to validate the theoretical results.  相似文献   

8.
为减少通信时延对系统一致性的影响,针对有领导者的二阶非线性多智能体系统的领导跟随一致性进行了研究,新颖的提出近似随机脉冲时延的概念并应用于新协议。相比于传统协议,新协议在脉冲时刻通信时延较小时,各智能体基于时延态对自身当前时刻状态进行预测,并以自身未来预测状态取代时延态发送给各邻接智能体同时补偿自身反馈通道时延,从而使系统更快实现一致性。基于Lyapunov稳定性理论,利用一类再推广的Halanay不等式的性质给出两个保证系统实现一致性的充分条件。最后,实例仿真证明了新协议的优越性。  相似文献   

9.
This paper is concerned with distributed pinning consensus problem for a class of nonlinear multi-agent system with observer-based protocols. Two types of state observers including local observer and distributed pinning observer are proposed for the single nonlinear agent with the first one designed by the local output information and the second one designed via the relative output information of its neighboring agents. According to the state information observed, a distributed pinning observer-based protocol is proposed for the leader-following consensus of the multi-agent system. Furthermore, two multi-step algorithms are presented to construct the observer gains and the protocol parameters for the proposed protocols respectively. It is shown that under the condition that the pinning joint communication topology contains a directed spanning tree, the sufficient criteria established can not only ensure the observation error to be globally asymptotically stable, but also guarantee the consensus of the multi-agent system to be solved asymptotically. Finally, two numerical examples are provided to demonstrate the effectiveness of the observer-based protocols.  相似文献   

10.
In this paper, we investigate the perfect consensus problem for second-order linearly parameterised multi-agent systems (MAS) with imprecise communication topology structure. Takagi-Sugeno (T–S) fuzzy models are presented to describe the imprecise communication topology structure of leader-following MAS, and a distributed adaptive iterative learning control protocol is proposed with the dynamic of leader unknown to any of the agent. The proposed protocol guarantees that the follower agents can track the leader perfectly on [0,T] for the consensus problem. Under alignment condition, a sufficient condition of the consensus for closed-loop MAS is given based on Lyapunov stability theory. Finally, a numerical example and a multiple pendulum system are given to illustrate the effectiveness of the proposed algorithm.  相似文献   

11.
This article studies the leader-following consensus problem for mixed-order multi-agent systems with a leader. Different from the traditional leader which is independent of all the other agents, the leader, called smart leader, can obtain and utilize the feedback information from its neighbors at some disconnected time intervals. A new distributed consensus control protocol based on intermittent control is developed for leader-following consensus with a smart leader. Moreover, the smart leader can adjust the control protocol based on the feedback information from its neighbors. With the aid of Lyapunov function, some sufficient conditions are derived for leader-following consensus of multi-agent systems with mixed-order dynamics under fixed directed topology. In addition, the similar results are obtained under switching directed topology. Finally, simulation results are provided to verify the correctness and effectiveness of theoretical results.  相似文献   

12.
In this paper, we study the leader-following rendezvous and flocking problems for a class of second-order nonlinear multi-agent systems, which contain both external disturbances and plant uncertainties. What differs our problems from the conventional leader-following consensus problem is that we need to preserve the connectivity of the communication graph instead of assuming the connectivity of the communication graph. By integrating the adaptive control technique, the distributed observer method and the potential function method, the two problems are both solved. Finally, we apply our results to a group of van der Pol oscillators.  相似文献   

13.
This paper considers the distributed consensus problem of linear multi-agent systems subject to different matching uncertainties for both the cases without and with a leader of bounded unknown control input. Due to the existence of nonidentical uncertainties, the multi-agent systems discussed in this paper are essentially heterogeneous. For the case where the communication graph is undirected and connected, based on the local state information of neighboring agents, a fully distributed continuous adaptive consensus protocol is designed, under which the consensus error is uniformly ultimately bounded and exponentially converges to a small adjustable bounded set. For the case where there exists a leader whose control input is unknown and bounded, a distributed adaptive consensus protocol is proposed to ensure the boundedness of the consensus error. A sufficient condition for the existence of the proposed protocols is that each agent is stabilizable.  相似文献   

14.
This article addresses the leader-following output consensus problem of heterogeneous linear multi-agent systems with unknown agent parameters under directed graphs.The dynamics of followers are allowed to be non-minimum phase with unknown arbitrary individual relative degrees.This is contrary to many existing works on distributed adaptive control schemes where agent dynamics are required to be minimum phase and often of the same relative degree.A distributed adaptive pole placement control sche...  相似文献   

15.
董汉  程善  张冬梅 《控制理论与应用》2019,36(10):1599-1605
本文研究了有无引导者的多智能体系统在非线性协议下的一致性问题.当智能体速度信息无法获知时,分别针对有无引导者的多智能体系统设计了包含辅助系统和智能体相对位移信息的非线性分布式协议.借助图论、Lyapunov稳定性理论、Barbalat引理等方法,推导出有无引导者的多智能体系统在连通无向通讯网络中实现一致的充分条件,其次,设计了一种新的能使引导–追随者多智能体系统在有向通讯网络中实现期望一致的协议.最后,数值仿真验证了结果的正确性.  相似文献   

16.
In this paper, the consensus tracking problem is investigated for stochastic nonlinear multiagent systems with full state constraints and time delays. The barrier Lyapunov functions proposed for single‐agent constrained systems are constructively extended to solve the consensus problem for multiagent systems with the full state constraints. Some Lyapunov‐Krasovskii functionals are introduced to compensate for state time delays, which are inherent in the complicated nonlinear systems. Based on the variable separation technique, the difficulty arising from the nonstrict‐feedback structure is overcome. Under a directed communication topology, the distributed neuroadaptive control protocols are proposed to guarantee that all the follower agents follow the trajectory of the leader agent and the full state constraints are not violated. The effectiveness of the proposed distributed adaptive control approach is verified via simulation examples.  相似文献   

17.
This paper studies the quantized consensus problem for a group of agents over directed networks with switching topologies. We propose an effective distributed protocol with an adaptive finite-level uniform quantized strategy, under which consensus among agents is guaranteed with weaker communication conditions. In particular, we analytically prove that each agent sending 5-level quantized information to each of its neighbors, together with 3-level quantized information to itself at each time step, which suffices for attaining consensus with an exponential convergence rate as long as the duration of all link failures in the directed network is bounded. By dropping the typical common left eigenvector requirement for the existence of common quadratic Lyapunov function, we conduct the convergence analysis based on the notion of input-to-output stability. The proposed quantized protocol has favorable merits of requiring little communication overhead and increasing robustness to link unreliability, and it fits well into the digital network framework.  相似文献   

18.
This paper addresses the distributed consensus protocol design problem for linear multi-agent systems with directed graphs and external unmatched disturbances. Novel distributed adaptive consensus protocols are proposed to achieve leader–follower consensus for any directed graph containing a directed spanning tree with the leader as the root node and leaderless consensus for strongly connected directed graphs. It is pointed out that the adaptive protocols involve undesirable parameter drift phenomenon when bounded external disturbances exist. By using the σ modification technique, distributed robust adaptive consensus protocols are designed to guarantee the ultimate boundedness of both the consensus error and the adaptive coupling weights in the presence of external disturbances. All the adaptive protocols in this paper are fully distributed, relying on only the agent dynamics and the relative states of neighbouring agents.  相似文献   

19.
In this paper, a distributed consensus of delayed multi‐agent systems with a leader is investigated, and a nonlinear protocol is proposed based on intermittent control. A notable feature of this protocol is to address second‐order consensus problems for delayed nonlinear multi‐agent systems, where agents can only communicate with each other over some disconnected time intervals. Some sufficient conditions to guarantee the consensus over fixed and switching topologies are derived. It is shown that second‐order consensus for delayed multi‐agent system with intermittent control can be achieved if the time delay is less than a critical value and the communication time duration is larger than a threshold value. In addition, some numerical examples are given to illustrate the effectiveness and feasibility of the theoretical results.  相似文献   

20.
针对非线性马尔科夫跳变多智能体系统在有向固定拓扑下的领导跟随一致性问题,为减少智能体间不必要的通信传输,节约网络资源,保证系统性能,提出一种自适应事件触发控制策略.首先,将每一个智能体均视为马尔科夫跳变系统,且马尔科夫链的转移概率部分未知;通过简单的模型转换建立误差系统,将多智能体系统一致性问题转化为误差系统的稳定性问题;在此基础上,构造合适的Lyapunov-Krasovskii泛函并利用Jensen不等式和线性矩阵不等式等技术给出使多智能体系统达到领导跟随一致性的充分条件及控制器设计方法;通过求解线性矩阵不等式可以得到多智能体系统一致性控制器增益矩阵和事件触发参数矩阵;最后,通过数值仿真验证所提出方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号