首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper concerns the asynchronously switched control problem for a class of switched linear systems with average dwell time (ADT) in both continuous-time and discrete-time contexts. The so-called asynchronous switching means that the switchings between the candidate controllers and system modes are asynchronous. By further allowing the Lyapunov-like function to increase during the running time of active subsystems, the extended stability results for switched systems with ADT in nonlinear setting are first derived. Then, the asynchronously switched stabilizing control problem for linear cases is solved. Given the increase scale and the decrease scale of the Lyapunov-like function and the maximal delay of asynchronous switching, the minimal ADT for admissible switching signals and the corresponding controller gains are obtained. A numerical example is given to show the validity and potential of the developed results.  相似文献   

2.
研究异步切换下时滞切换正系统的有限时间控制问题,即针对控制器切换滞后于子系统切换形成的异步现象,基于平均驻留时间切换方法对切换正系统开展有限时间镇定研究.首先,将每个正子系统运行的区间划分为子系统与控制器匹配和失配区间,并构造多余正Lyapunov-Krasovskii泛函;其次,基于有限时间稳定理论,实现平均驻留时间切换律及异步时滞切换正系统有限时间镇定控制器的联合设计,并给出连续时间和离散时间两种情形下系统有限时间镇定的充分条件;最后,通过两个仿真例子验证所提出方法的有效性.  相似文献   

3.
The stability of a class of switched stochastic nonlinear retarded systems with asynchronous switching controller is investigated. By constructing a virtual switching signal and using the average dwell time approach incorporated with Razumikhin-type theorem, the sufficient criteria for pth moment exponential stability and global asymptotic stability in probability are given. It is shown that the stability of the asynchronous stochastic systems can be guaranteed provided that the average dwell time is sufficiently large and the mismatched time between the controller and the systems is sufficiently small. This result is then applied to a class of switched stochastic nonlinear delay systems where the controller is designed with both state and switching delays. A numerical example illustrates the effectiveness of the obtained results.  相似文献   

4.
研究在模型依赖平均驻留时间切换策略下切换线性系统的异步切换控制问题,同时考虑模型依赖的控制器滞后时间的约束问题.在实际情况下,信号传输和系统检测等原因会导致控制器的切换滞后于子系统.基于这类情况,首先将子系统运行的区间划分为子系统与控制器相匹配的区间和非匹配的区间,根据模型依赖的驻留时间策略设计出各子系统的控制器;然后,结合模型依赖的控制器滞后时间、系统参数和Lyapunov稳定条件推导出合适的驻留时间设计参数,且使得异步切换系统全局一致指数稳定;最后通过数值仿真验证了所提出方法的有效性.  相似文献   

5.
This article is concerned with the problem of state feedback control for a class of discrete-time switched singular systems with time-varying state delays under asynchronous switching. The asynchronous switching considered here means that the switching instants of the candidate controllers lag behind those of the system modes. The concept of mismatched control rate is introduced. By using the multiple Lyapunov function approach and the average dwell time technique, a sufficient condition for the existence a stabilising switching law is first derived to guarantee the regularity, causality and exponential stability of the closed-loop system in the presence of asynchronous switching. The stabilising switching law is characterised by a upper bound on the mismatched control rate and a lower bound on the average dwell time. Then, the corresponding solvability condition for a set of mode-dependent state feedback controllers is established by using the linear matrix inequality (LMI) technique. Finally, a numerical example is provided to illustrate the effectiveness of the proposed method.  相似文献   

6.
针对一类具有任意相对阶且带有部分非输入到状态稳定逆动态的非线性切换系统, 提出一种动态事件触 发漏斗跟踪控制方案. 首先, 引入一个虚拟输出将任意相对阶的非线性切换系统转换为相对阶为一的非线性切换系 统. 其次, 设计各子系统的事件触发漏斗控制器和切换的动态事件触发机制, 解决候选事件触发漏斗控制器和子系 统之间的异步切换问题, 所提方案消除已有文献中为所有子系统设计共同控制器带来的保守性. 在一类具有平均驻 留时间切换信号的作用下, 保证切换闭环系统的所有信号都是有界的, 且跟踪误差一直在预设的漏斗内演化, 并排 除采样中的奇诺现象. 最后, 一个仿真例子验证方案的实用性和有效性.  相似文献   

7.
The problem of secure control in cyber‐physical systems is considered in this work. A new modeling framework is first introduced, ie, cyber‐physical systems with attacks/faults changing system dynamics is modeled as a switched system, where the switching among subsystems is triggered by a rule generated by attackers but unknown for defenders. Based on an average dwell‐time approach incorporated by the attack frequency and duration properties, a convergence condition of the Lyapunov function on active intervals of subsystems (ie, the attack and healthy modes), under the developed switched controller, is given. Next, the unknown rule, however, leads to the asynchronous switching problem between the candidate controllers and system modes. As a result, degradation of the system performance (eg, a large chatter occurred in the system state trajectories) in the asynchronous intervals is caused. To address the difficulty, a novel switching law based on a prescribed performance is proposed, and it is shown that the asynchronous intervals are shortened by reducing adjustable parameters in the switching law. An illustrative example verifies the effectiveness of the proposed method.  相似文献   

8.
针对一类时变切换系统,当考虑子系统具有分数阶(Fractional Order)特性时,提出了一种基于模型依赖平均驻留时间方法的有限时间稳定性条件及异步切换控制策略.借助Caputo分数阶导数引理和切换Lyapunov函数,利用矩阵不等式技术提出了分数阶时变切换系统有限时间稳定的充分条件.将有限时间稳定的结果进一步推广到有限时间有界的情形,利用平均驻留时间思想提出了分数阶时变切换系统有限时间有界的充分条件,基于该条件设计了系统的异步切换控制器.所给出的设计方法将系统异步切换控制问题转化为矩阵不等式组的求解问题.通过数值仿真验证了所提控制方法的有效性.  相似文献   

9.
This paper investigates the state feedback stabilization problem for a class of positive switched systems with time-varying delays under asynchronous switching in the frameworks of continuous-time and discrete-time dynamics. The so-called asynchronous switching means that the switches between the candidate controllers and system modes are asynchronous. By constructing an appropriate co-positive type Lyapunov-Krasovskii functional and further allowing the functional to increase during the running time of active subsystems, sufficient conditions are provided to guarantee the exponential stability of the resulting closed-loop systems, and the corresponding controller gain matrices and admissible switching signals are presented. Finally, two illustrative examples are given to show the effectiveness of the proposed methods.  相似文献   

10.
Asynchronous switching between switched system and associated filter or controller frequently occurs in several applications. In this article, the fault detection problem for a class of switched nonlinear systems with asynchronous switching is addressed. To model the switched system behaviour under asynchronous switching, two working modes are adopted to facilitate the studies on the issue. Then, based on average dwell time approach, a fault detection filter is developed via solving LMIs. Furthermore, it is proved that the fault detection problem under synchronous switching is only a particular case of our results for asynchronous switching. Finally, a numerical example is given to illustrate the effectiveness of proposed results.  相似文献   

11.
本文基于采样控制,解决了线性切换系统的输出调节问题.首先考虑了外部输入信号是常数的情况,给出了采样周期与平均驻留时间的关系.通过构造一类Lyapunov-Krasovskii泛函,使得闭环系统内部稳定且调节输出趋于零.其次考虑了外部输入信号是导数有界且时变的情况,给出了采样数据状态反馈控制器,并依据采样周期和平均驻留时间关系给出的切换条件得到了切换系统实用输出调节问题可解的充分条件.最后通过两个数值例子验证了方法的有效性.  相似文献   

12.
研究了一类控制器模态和系统模态不匹配的异步切换多智能体系统的输出调节问题.利用平均驻留时间和联合切换信号相结合的方法来处理由控制器与系统模态的切换存在时延引起的系统不稳定问题.提出一种基于输出反馈的切换控制策略,给出了异步切换多智能体输出调节问题可解的充分条件.最后,通过仿真实例验证结果的有效性.  相似文献   

13.
A two-layer switching architecture and a two-layer switching rule for stabilization of switched linear control systems are proposed, under which the mismatched switching between switched systems and their candidate hybrid controllers can be allowed. In the low layer, a state-dependent switching rule with a dwell time constraint to exponentially stabilize switched linear systems is given; in the high layer, supervisory conditions on the mismatched switching frequency and the mismatched switching ratio are presented, under which the closed-loop switched system is still exponentially stable in case of the candidate controller switches delay with respect to the subsystems. Different from the traditional switching rule, the two-layer switching architecture and switching rule have robustness, which in some extend permit mismatched switching between switched subsystems and their candidate controllers.  相似文献   

14.
本文研究了随机网络攻击下切换信息物理系统的事件触发控制问题.将信息物理系统描述为一种切换线性系统形式.引入事件触发机制来节省系统资源和减轻网络负载,当误差超过给定阈值时传感器中的采样数据才通过通信网络传输到控制器中.考虑在传感器与控制器的通信网络中受到两种不同特征的随机网络攻击.在网络攻击和所设计的事件触发控制器下,建立了切换随机信息物理系统模型.利用模态依赖平均驻留时间方法构建了相应的切换信号.在设计的事件触发控制器和模态依赖平均驻留时间切换信号下实现了系统的均方指数稳定性,并给出了控制器增益.最后,通过实例验证了所得理论结果的有效性.  相似文献   

15.
This paper considers an asynchronous problem for sampled‐data control of switched linear systems, which are described as switched linear systems with an input delay. To handle the problem, this paper proposes a stability criterion for the systems by constructing a novel Lyapunov‐Krasovskii functional dependent not on system modes but on controller modes. The functional continuously remains when the system modes are switched but discontinuously changes whenever the controller mode moves to the current system mode at the sampling instants. Furthermore, the functional is allowed to increase or decrease up to a certain level when the functional discontinuously changes and to increase up to a certain level when the system modes and the controller modes are asynchronous. Based on the functional, this paper derives an average dwell time associated with the interval of samplings and the incremental level of the functional for guaranteeing the stability of the systems. A numerical example illustrates the validation of the proposed method.  相似文献   

16.
This paper investigates a global sampled‐data output feedback stabilization problem for a class of switched stochastic nonlinear systems whose output and system mode are available only at the sampling instants. An observer is designed to estimate the unmeasurable state and thus a sampled‐data controller is constructed with the sampled estimated state. As a distinctive feature, a merging virtual switching signal is introduced to describe the asynchronous switching generated by detecting the system mode via a sampler. By choosing an appropriate piecewise Lyapunov function, it is proved that the proposed sampled‐data controller with allowable sampling period can stabilize the considered switched stochastic nonlinear systems under an average dwell‐time condition. Finally, two simulation results are presented to illustrate the effectiveness of the proposed method.  相似文献   

17.
This paper considers the stability and stabilization problems for the switched linear stochastic systems under dwell time constraints, where the considered systems can be composed of an arbitrary combination of stable and unstable subsystems. First, a time‐varying discretized Lyapunov function is constructed based on the projection of a linear Lagrange interpolant and a switching‐time‐dependent “weighted” function. The “weighted” function not only enforces the Lyapunov function to decrease at switching instants but also coordinates the dynamical behavior of the subsystems. As a result, some unified criteria for mean square stability and almost sure stability of the switched stochastic systems are established in terms of linear matrix inequalities. Based on the obtained stochastic stability criteria, 2 types of state feedback controllers for the systems are designed. Moreover, the novel results are applied to solve the intermittent control or the controller failure problems. Finally, conservatism analysis and numerical examples are provided to illustrate the effectiveness of the established theoretical results.  相似文献   

18.
This paper is concerned with the problem of input‐to‐state stability (ISS) for a class of switched nonlinear delay systems. The cases where the switching signal of the system and the switching signal of the corresponding controller are synchronous and asynchronous are both considered. To study two asynchronous switching signals in a unified framework, we adopt the technique of the merging switching signal. Based on a piecewise Lyapunov–Krasovskii functional method, some sufficient conditions are explicitly given to guarantee the ISS of the switched nonlinear delay system under the average dwell time scheme. Finally, a numerical example is presented to demonstrate the effectiveness of the proposed theory.  相似文献   

19.
ABSTRACT

This study examines the finite time annular domain stability (FTADS) and stabilisation of a class of Itô stochastic impulsive systems with asynchronous switching controller. The asynchronous switching means that the controller switching does not accurately coincide with system switching in delayed time interval. The design of the controller depends on the observed jumping parameters, which cannot be precisely measured in real-time because of switching delay. Our results apply to cases where some subsystems of the switched systems are not necessarily stable under the influence of input delay. When the subsystem is stable in the synchronous switching interval and unstable in the asynchronous case, a compromise among the average impulsive interval, the upper bound of delay, and the decay/increasing rate of Lyapunov function in the synchronous/asynchronous switching interval respectively is given. By the mode-dependent parameter approach (MDPA) and allowing the increase of the impulses on all the switching times, the extended FTADS criteria for Itô stochastic impulsive systems in generally nonlinear setting are derived first. Then, we focus on the case when the system in both synchronous and asynchronous switching intervals are unstable. By reaching a tradeoff among average impulsive interval, the upper bound of delay, the magnitude of impulses and the difference between the increasing rate of Lyapunov function in the synchronous and asynchronous switching interval, new sufficient conditions for existence of the state feedback controller are also developed by MDPA. In addition, we consider the effect of different impulsive strengths (harmful and beneficial impulses) and obtained less conservative results because the Lyapunov function may be non-decreasing during switching interval. Moreover, we extend the conclusion from nonlinear stochastic impulsive switching systems to linear case. Finally, we present two examples to illustrate the effectiveness of the results obtained in this study.  相似文献   

20.
This paper addresses the stabilisation problem for a class of positive switched nonlinear systems under asynchronous switching, which means that the switches between the candidate controllers and the system modes are not synchronous. The continuous and discrete cases are considered respectively. Sufficient conditions are firstly provided for the existence of the asynchronous switching controllers to guarantee the closed-loop system to be positive and exponentially stable, and the corresponding admissible switching signals are presented. As a special case, the stabilisation results for positive switched linear systems under asynchronous switching are provided accordingly. Finally, two numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号