首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The safety assessment of railway axles is based on a two-stage approach: fatigue strength design and regular inspections which, in terms of a general safety philosophy refer to safe-life and damage tolerance concepts. Starting with a recent failure case, a broken axle of a German high speed train, a discussion is presented on issues of both safety levels. These include ideas for finite life design, the treatment of in-service effects on the fatigue strength due to flying ballast damage and corrosion pits, the effect of corrosion on fatigue crack initiation and propagation, potential effects of non-metallic inclusions in steels, the way to detect them by quality control measures and reliability aspects of non-destructive testing with respect to the detection of fatigue cracks. Proposals are made how the safety level could be further improved.  相似文献   

2.
An affordable and feasible method with moderate accuracy is developed to realize fatigue reliability assessment and life prediction including super long life regime (SLLR) through series of experimental researches on a railway axle steel and real axles. A competition damage mechanism for fatigue crack initiation and growth in SLLR is revealed to fascinate an understanding on wide fatigue damage behavior and to provide a weigh and balance on material primary quality control and on-line inspection capacity. Affordable material probabilistic strength-life (S-N) curves including SLLR are presented by an extrapolation approach on a concurrent probability rule between the S-N relations in mid-long life regime and the fatigue limits with a specified life definition. And then, structural probabilistic S-N curves are deduced by considering scale-induced effect on the material curves. Random cyclic stress-strain (CSS) relations are depicted for constructing structural random stressing history. Reliability assessment and fatigue life prediction are conducted by an interference model of the applied stress deduced from the random CSS relations and the strength capacity derived from the structural probabilistic S-N curves. Availability and feasibility of the present method are indicated by a successful application on a railway axle steel.  相似文献   

3.
Railway axles are safety relevant components which are usually designed for up to 30 years of service. Besides the experience based definition of inspection intervals, the application of fracture mechanics tools is currently being introduced as an appropriate method. Basic fatigue crack growth data both in the range of stable crack propagation and near the threshold have been experimentally determined for the heat-treated railway axle steels 25CrMo4 (EA4T) and 34CrNiMo6+QT under constant and variable amplitude loading at relevant stress ratios (predominantly fully reversed load cycles, R = −1). For the computational modelling of fatigue crack propagation, a generally applicable stress intensity factor solution has been derived by finite-element analyses. The results are employed for predicting fatigue crack growth in a reference railway axle within the shaft and in the fillet zone near a press fit. Additionally, the influence of press fitting on the crack propagation behaviour in a fillet is discussed. Finally, fatigue crack growth curves experimentally determined on 1:3 and 1:1 scaled axles at constant and variable amplitude loading are compared to the test results for standard M(T) specimens, as well as to respective analytical predictions.  相似文献   

4.
The work presented in this paper was led within the collaborative project “Euraxles” of the FP7 program of the European Commission. It aimed at developing processes and methods that contribute to the minimization of the risk of fatigue failure of railway axles in service. This paper focuses on the development of a method to assess the reliability of axles according to fatigue damage. The proposed approach is mainly based on the stress strength interference analysis (SSIA) and the fatigue‐equivalent‐load (FEL) methods. It aims at calculating the axles’ probability of fatigue failure, by characterizing the variability of real in‐service loads and the scatter of the axles fatigue strength, and at evaluating more accurately the actual design margins. First of all, the main lines of the stress strength interference analysis method are recalled. This method aims at evaluating the in‐service reliability of components for their design or their homologation. It is used in many industries for various applications (mechanical components or systems, electronic elements, etc.). In the second part, the fatigue load analysis method that is proposed for railway axles is described. It starts with a post‐processing of an axle load measurement: from a time signal of forces applied to both wheels fitted on the axle, fatigue cycles of bending moment applied to the axle are identified and transformed into a cyclic equivalent load, the Meq, which is a measurement of the severity of the initial variable load. Then, virtual but realistic load spectra are generated, thanks to a classification operation followed by a random draw of elementary load data that considers the operation and maintenance conditions of the axle. All the spectra are then analysed thanks to the fatigue‐equivalent‐load method in order to build the distribution of in‐service load severities that gives a picture of the stress to which the axles are submitted. In the third and last part of the paper, the methods are applied to real data of “Société nationale des chemins de fer français” (SNCF), the French national railway operator. Sensitivity analyses are performed in order to quantify the effect on the Meq of variations of parameters and to verify the convergence and robustness of the process. Finally, results obtained for a passenger coach are given. The comparison between the distribution of load severities and the normative load, defined as according to european standards EN13103, shows that, for the studied axle, the normative load is very conservative. Using the axles fatigue limits identified on full‐scale tests, a stress strength interference analysis is performed to calculate the probability of failure of the axle.  相似文献   

5.
A draft procedure for damage tolerance analysis of railway components is presented and illustrated by a case study on a railway axle. The scheme is based on the recently developed European flaw assessment procedure SINTAP, the NASGRO/ESACRACK procedure for fatigue crack extension and other documents. As the result of the worked example the crack size was quantified which has to be detected in non-destructive testing if the inspection interval is fixed by an existing maintenance plan. The resulting numbers are aimed at illustrating the method and cannot be used for industrial implementation without appropriate modification.  相似文献   

6.
A new surface induction hardening technology was designed for the purpose of increasing the resistance of railway wheelsets to fatigue damage. This paper gives a detailed presentation of the technological aspects of induction hardening of axles. The increased fatigue resistance in hardened surfaces compared with standard heat treatment of EA4T steel was verified using tensile test specimens, press‐fitted wheel seat/axle joints at 1:3 scale and press‐fitted wheel/axle joints at actual size. The 70% increase in the fatigue limit of induction hardened EA4T steel specimens compared with material subjected to standard heat treatment clearly demonstrates the effectiveness of this technology.  相似文献   

7.
A new type of railway coupling joint, developed by a leading international railway manufacturer, has shown limited fatigue lives in service, in a preliminary service assessment of fatigue life. To get more data about this problem a detailed study was carried out of the fatigue design of the component including stress analysis and fatigue life evaluation.The main objective of this paper consisted in getting accurate information concerning the level of operational reliability of the fatigue behaviour of this new type of coupling used in carriages for passenger transportation in suburban lines.The strains in service were obtained with strain gauge rosettes in a typical line. Values of the cumulative fatigue damage were obtained in this service conditions. Linear damage accumulation laws were used.A numerical stress analysis using FE methods were performed. Detailed stress distributions were obtained in the component. Hot spot areas of stress were obtained and also the values of critical fatigue damage in these critical points of stress distributions. The extrapolation method to the hot spot points, was used to obtain the critical values of fatigue damage.The results of fatigue damage gave an infinite value of fatigue life for the coupling.  相似文献   

8.
The purpose of this paper is to provide a simple approach for reliability analysis based on fatigue or overstress failure modes of mechanical components, and explain how this integrated method carries out spectral fatigue damage and failure reliability analysis. In exploring the ability to predict spectral fatigue life and assess the reliability under a specified dynamics environment, a methodology for reliability assessment and its corresponding fatigue life prediction of mechanical components using a supply-demand interference approach is developed in this paper. Since the methodology couples dynamics analysis and stochastic analysis for fatigue damage and reliability prediction, the conversion of the duty cycle history for the reliability study of an individual component is also presented. Using the proposed methodology, mechanical component reliability can be predicted according to different mission requirements. For an explanation of this methodology, a probabilistic method of deciding the relationship between the allowable stress or fatigue endurance limit and reliability is also presented.  相似文献   

9.
The railway axles are subjected to cyclic loading during their operation. Their load is of long-term nature, therefore a real risk of fatigue failure exists. This failure could lead to derailment of the whole train with serious consequences. To prevent such scenario, the railway axles have to be safely removed from operation before their final failure occurs.This paper presents methodology for the residual fatigue lifetime prediction of the railway axle based on the linear elastic fracture mechanics concept. The methodology contains estimation of the critical position of initial crack, prediction of the fatigue crack front shape development during crack propagation, separation of the bending and press-fitting contributions to the axle load, experimental measurement of the crack growth kinetics of EA4T steel and subsequent estimation of the residual fatigue lifetime of railway axle. Part of the presented study is also devoted to the probability aspects of determination of material characteristics describing fatigue crack propagation and retardation effects caused by existence of plastic zone ahead of propagating fatigue crack. Described methodology is already applied in the design process of new railway axles in Bonatrans company.  相似文献   

10.
High-cycle fatigue tests with an evaluation of fatigue limit were carried out on large model components of bars with press fitted hubs of diameter 63/59 mm. Bars were made of three railway axle steels EA1N, EA4T and 34CrNiMo6 with considerable different strength from 586 MPa to 1041 MPa, respectively. Detection and measurement of crack growth under hubs by ultrasonic method was performed during the tests. In spite of the differences in strength and alloying of tested bars, differences in mean value of fatigue limit were not significant. This result was connected with specific damage mechanism and microcracks initiation under hubs with fretting effects. Short fatigue crack growth under hubs occurred at stress intensity factor range ΔK considerably bellow threshold value ΔKth of long cracks. Simultaneous growth of main cracks from more than one point of surface circumferential area under hub was quite frequently observed.  相似文献   

11.
Fretting fatigue failure of press fitted railway axle-wheel assembly was presented. Size, distribution and propagation profiles of the circumferential fretting cracks on the full-scale axles were determined by magnetic particle and metallographic slicing methods. The distribution of multiaxial stress cycle along the press-fit seat was obtained by finite element analysis (FEA). The obtained stress path was used for interpretation of fractographic evidence collected at crack initiation sites and the crack propagation plane. Metallurgical and mechanical characterization of the axle material (34CrMo4) was made on the specimens sampled from the broken axles. The threshold conditions for propagation of small fretting cracks were determined by Kitagawa analysis and El-Haddad correction method. The results of the experimental study were compared with EA1N grade steel which is given as the reference axle material in the EN standards. The metallurgical factors affecting the fretting fatigue crack initiation and propagation were investigated. The causes of the examined axle failures were associated with the deteriorated mechanical properties of the axle material.  相似文献   

12.
铁路客车的轴温报警装置是保障车辆运行安全的重要组成部分,是检测客车轴温的重要工具,轴温过高,极易引发行车安全问题.为了解决现有的轴温报警器不能进行联网功能检测的问题,本文设计了一种新型的铁路客车轴报检测联网试验台.本试验台通过将客车的轴温报警器设备进行联网通信,具有可直接检测客车轴温报警器系统联网通信功能,集中观测轴温报警器的测温状况以及温升报警功能,并能同时接入20台轴报控制显示器,将客车的轴温数据统一传输到主机中,检测人员通过对每台轴温报警器的数据进行分析,可判断出轴温报警器的整体性能,确保每台轴温报警器的可靠性,为行车安全提供了重要保障.  相似文献   

13.
李慧乐  夏禾 《工程力学》2017,34(2):69-77
发展了一种基于车桥耦合系统随机振动分析的铁路钢桥疲劳可靠度评估方法,建立车桥耦合系统模型,选取车速和轨道不平顺作为基本随机变量进行随机振动分析,以此确定桥梁构件等效疲劳应力幅及其循环次数的概率模型。在此基础上,建立基于S-N曲线法的疲劳极限状态函数并进行疲劳可靠度分析。以一座铁路下承式钢桁梁桥为例进行了疲劳可靠度评估,并讨论了车速及轨道平顺性对构件疲劳可靠性的影响。结果表明:该文方法可有效用于铁路钢桥疲劳可靠度评估;受车速及轨道不平顺随机性的影响,列车引起的桥梁构件等效疲劳应力幅及其循环次数均具有一定的不确定性,应视为随机变量,二者可采用对数正态分布表示;车速和轨道不平顺可显著影响桥梁构件的疲劳可靠性,疲劳关键构件的可靠度指标随着轨道平顺性增强而提高。  相似文献   

14.
The fatigue strength and its correct assessment play an important role in design and maintenance of marine crankshafts to obtain operational safety and reliability. Crankshafts are under alternating bending on crankpins and rotating bending combined with torsion on main journals, which mostly are responsible for fatigue failure. The commercial management success substantially depends on the main engine in service and of its design crankshaft, in particular. The crankshaft design strictly follows the rules of classification societies. The present study provides an overview on the assessment of fatigue life of marine engine crankshafts and its maintenance taking into account the design improving in the last decades, considering that accurate estimation of fatigue life is very important to ensure safety of components and its reliability. An example of a semi-built crankshaft failure is also presented and the probable root case of damage, and at the end some final remarks are presented.  相似文献   

15.
Review of the fatigue damage tolerance of high-speed railway axles in Japan   总被引:1,自引:0,他引:1  
Railway axles are one of the most important components in railway systems since a fail-safe design is not available. In the present paper, the fatigue tolerance of the high-speed railway axle in Japan is reviewed. To maintain the safety, the fatigue strength of the axle has been extensively studied. Theses case histories and consequent improvements in manufacturing process are presented. The crack propagation behavior of the induction hardened axle is studied based on the fracture mechanics. Concerning the powered railway axles, the fatigue design method in Japan is compared with that in Europe and the effect of the train velocity on the allowable load is discussed.  相似文献   

16.
Fatigue damage prediction under a general multiaxial service loading consists of three main steps: multiaxial cycle counting, damage evaluation for an identified cycle (or reversal), and damage accumulations. The accuracy of fatigue life predictions depends on all the above steps. This paper reviews the evolutions of various multiaxial fatigue damage models, a comparative study is conducted about the physical basis, the computational efficiency, and the application range of the approaches. Based on the comparative studies, a new procedure is proposed to evaluate fatigue damage under general multiaxial random loading, which uses the Wang and Brown´s multiaxial cycle counting method for identifying cycles (or reversals), the modified procedure of the minimum circumscribed ellipse (MCE) approach for fatigue damage evaluation for an identified cycle (or reversal), and the Miner´s linear damage law for fatigue damage accumulations. By comparisons of the predicted life results with experimental results and with other approaches, it is shown that the proposed procedure is very efficient and suitable for computer aided structural optimization against fatigue.  相似文献   

17.
A concurrent probability method is proposed for estimating probabilistic fatigue S–N curves including the super-long life regime. This work is based on experimental investigation of LZ50 railway axle steel. Test results reveal that fatigue cracks are initiated from the weakest surface phase and the damage preferentially follows a competition mechanism between the surface quality and subsurface inclusions. The curves are estimated by the test data in the mid-long life regime and the fatigue limits, which were connected together in concurrent probability levels. The accuracy of the curves was verified by the test data in the super-long life regime.  相似文献   

18.
The axle of a load train failed after 5.37?×?106 cycles from its service. Macro-fractography showed clearly the fatigue fracture. The stress distribution in the shaft revealed that the maximum alternating stress was considerably less than the material modified fatigue limit obtained at 107 cycles from the S?CN diagram. Micro-fractography reported from the metallurgical laboratory proved the existence of a surface flaw. Ultimately, fatigue crack growth simulation was performed based on the simple Paris?CErdogan model for estimating the fatigue life of the defective axle. The results showed that the actual life of the axle could be satisfactorily predicted by means of the Paris?CErdogan model.  相似文献   

19.
Fretting damage failure analysis of a Chinese carbon railway axle RD2 was carried out. The wheel hub was in situ cut to expose the damaged surface of the wheel seat to avoid additional damage. A small‐scale axle test rig was developed, and simulation tests were performed at different rotator speeds of 1800 and 2100 rpm. The wear mechanism of fretting damage areas was a combination of abrasive wear, oxidative wear and delamination. The fracture surfaces exhibited characterization of multisource and step‐profile. The fretting fatigue crack initiated at the subsurface and propagated along an inclined angle at the first stage. The fretting damage at the higher speed was more severe compared with the lower speed, which lead to a relatively shorter fatigue life. The damage morphologies of the axle in the simulation tests were in good agreement with that observed in the failure analysis on real axle.  相似文献   

20.
基于时域方法研究岸桥起重机的风振疲劳可靠性问题。采用谐波叠加法给出了符合Davenport风速谱的多维脉动风速时间历程,基于Bernoulli方程得到相应的风压时间历程,并将相应的风压荷载作用于有限元模型,采用雨流计数法处理结构关键点的应力响应。基于疲劳失效的Basquin方程、Miner线性累积损伤准则和Goodman平均应力修正方程导出疲劳累积损伤的概率模型。考虑平均风速的概率分布,提出了基于概率累积损伤机制的风振疲劳可靠度和可靠性寿命计算方法,为岸桥起重机的风振疲劳可靠性分析作了一些有益的探索和研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号