首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 590 毫秒
1.
Objective: To evaluate the effect of cavity disinfectants on the immediate microtensile bond strength (μTBS) of an etch-and-rinse adhesive to water- and ethanol-saturated sound and caries-affected dentin (CAD). Material and Methods: Thirty-six human molars were sectioned to expose 1/3 of the mid-coronal dentin surface. Sound (n = 18) and CAD (n = 18) specimens were divided into six groups each (n = 3): one positive control (sound), one negative control (CAD), and five experimental groups each. In the control group, dentin surfaces were bonded using an etch-and-rinse adhesive with a traditional water-wet bonding technique. In the experimental groups, ozone was applied before etching and chlorhexidine after etching. In the ethanol-wet bonding groups, acid-etched dentin surfaces were treated with ethanol. Following adhesive application and composite buildups, bonded specimens were sectioned to form sticks. Failure modes were analyzed using a stereomicroscope. Results: The water-wet bonded sound control group yielded the highest μTBS among all groups (p < 0.001). The lowest μTBS values were observed in the ozone groups (p < 0.05). The ethanol-wet bonded CAD group exhibited a higher μTBS than the water-wet bonded negative controls. Although compared to the positive control, chlorhexidine decreased the μTBS (p < 0.05), an increase with no significant difference was observed in the negative control (p > 0.05). Conclusions: The μTBS values of CAD were lower than those of sound dentin. Ethanol-wet bonding improved the μTBS of CAD. Ozone application reduced the μTBS in both sound and CAD; chlorhexidine improved the immediate μTBS after etching in CAD.  相似文献   

2.
This study evaluated the effect of chlorhexidine (CLX) in cavities prepared with either ultrasound-mounted CVDentUS diamond tips or conventional diamond burs on dentin bond strength after 24 h and 180 days. Forty-eight dentin surfaces from sound third molars were flattened and divided into four groups (n = 12), according to the type of cavity preparation (CVDentUS ultrasound tip or conventional diamond) and with or without 2% CLX (Consepsis) treatment. After application of the adhesive system (Clearfil SE Bond), microhybrid composite resin blocks (Charisma) were made on the dentin surface in increments. After 24 h, the specimens were sectioned into stick-shaped samples with an adhesive interface of approximately 1 mm2. From each tooth, half of the sticks were evaluated after 24 h of storage in distilled water and the other half after 180 days, using a universal testing machine. Three-way analysis of variance showed no significant triple interactions (p = 0.722) or double interactions between factors. Higher bond strength values were observed with the use of ultrasonic tips (p = 0.019), irrespective of whether or not CLX was applied in either time period. No difference in bond strength values was observed in terms of CLX application (p = 0.581). No significant difference in bond strength values was shown after storage for 24 h or 180 days (p = 0.302). In conclusion, the ultrasonic tips promoted greater bond strength to dentin, irrespective of whether or not CLX was applied, and storage time.  相似文献   

3.
To evaluate the effectiveness of dentin biomodification with epigallocatechin-3-gallate (EGCG) on the resin-dentin bonds over time. Twenty seven extracted human third molars were prepared to expose a flat dentin surface and divided into 3 groups (n=9). Dentin surfaces were dried and treated with 20 µL aliquots of either distilled water (control); 2% chlorhexidine digluconate solution (CHX) or 0.1% EGCG aqueous solution. Solutions were rubbed for 60 s followed by bonding with Adper Easy One, and 5-mm-thick resin crown build-up. Bonded teeth were stored in distilled water for 24 h and then longitudinally sectioned to obtain bonded sticks. One-third of the specimens were immediately subjected to a microtensile bond strength test in tension at 0.5 mm/min, while the remaining specimens were tested after six and twelve months of storage in distilled water at 37 °C. Data were analyzed with Two-way ANOVA and Holm–Sidak method. After 24 h of storage, mean bond strength values were not significantly different among all groups (p>0.05). Bond strengths of EGCG and CHX remained stable after 6 and 12 months. (p>0.05). To conclude, pretreatment with EGCG or CHX preserved the bonding of Adper Easy One to dentin after six and twelve months of storage.  相似文献   

4.
The aim of the present in vitro study was to evaluate the effect of chlorhexidine, applied before a self-etching adhesive system (Clearfil SE Bond) on microtensile bond strength to superficial and deep dentin (DD), immediately and after six months of water storage (WS). Forty dentin specimens were divided into two groups according to dentin depth: superficial and deep. The specimens were then divided according to the solution to be applied (n = 10): CLX: 2% chlorhexidine (passively applied for 60 s) and NT (no treatment). A self-etching adhesive system was applied according to the manufactures instructions, with composite restorative placed on the dentin surface. After 24 h, dentin–resin blocks were sectioned into beam-shaped specimens that were submitted to microtensile bond strength testing either immediately or after six months of WS. Data were submitted to three-way ANOVA (α = 0.05). Bond strength values for the deep dentin group were significantly lower than those observed for superficial dentin (SD) (p = 0.002), whether chlorhexidine solution had been applied or not. There was no statistical difference in bond strength for specimens tested after 24 h and 6 months of WS. The application of chlorhexidine did not affect immediate and long-term bond strength to dentin. Bond strength in deep dentin was lower than in SD.  相似文献   

5.
This study evaluated the effect of different cementing strategies and adhesive interface aging on microtensile bond strength (μTBS) of lithium disilicate ceramic (IPS e.max CAD) to dentin. Forty coronal dentin fragments were randomly assigned to four groups according to the cementing strategy used to bond lithium disilicate ceramic to coronal dentin surface (n = 10): U200 (self-adhesive resin cement (RC) RelyX U200®/3 M ESPE), SBU (single-step self-etching adhesive system (AS) Single Bond Universal®/3 M ESPE + RelyX ARC®/3 M ESPE RC), AdperSB (two-step etch-and-rinse AS Single Bond 2®/3 M + RelyX ARC®/3 M ESPE RC) and Scotchbond (three-step etch-and-rinse AS Scotchbond Multi-Purpose®/3 M + RelyX ARC®/3 M RC). After 48 h, the ceramic-tooth blocks were sectioned perpendicular to the adhesive interface in the form of sticks and randomly subdivided into two groups according to when they were to be submitted to μTBS testing: immediately or 6 months after storage in water. Some sticks were kept for analysis of the adhesive interface by scanning electron microscopy (SEM). The μTBS test was performed in a universal testing machine (0.5 mm/min). The data (MPa) were analyzed using split-plot ANOVA and Tukey’s test (α = 0.05). Water storage decreased μTBS in all cementing strategies. The μTBS was greatest in the Scotchbond group and lowest in the U200 group, at both storage times. No signs of interface degradation were detected under SEM after water storage. In conclusion, water storage decreased bond strength, regardless of the adhesive cementation strategy, and that the three-step adhesive system/dual-cure resin cement ultimately performed better in terms of bond strength.  相似文献   

6.
The aim of this study was to evaluate the effect of a fluoride/MDPB (12-methacryloyloxydodecylpyridinium bromide)-containing adhesive system on the durability of a bond to permanent artificially induced caries-affected dentin (CAD) exposed to Streptococcus mutans culture and water storage. Twelve third molars were selected. Flat dentin surfaces were submitted to artificial caries development in S. mutans and Broth heart infusion (BHI). Caries-infected dentin was removed with burs according to clinical criteria and CAD cavities were restored with Adper Scotchbond Multi-Purpose (SBM) and Clearfil Protect Bond (CPB). Nontrimmed resin–dentin bonded interfaces (1 mm2) were stored in S. mutans+BHI for 3 days, in deionized water for 3 months, and afterwards subjected to microtensile bond strength test (μTBS). The control group was not submitted to storage and immediate μTBS testing was performed. Fractographic analysis was performed after μTBS testing. Four molars were restored as described, and morphological evaluation hybrid layer (HL) was performed by scanning electron microscopy (SEM). Two-way ANOVA with split-plot design and Tukey′s tests were performed. No difference was found between μTBS values of SBM and CPB irrespective of groups. Significant decrease was observed in μTBS values after S. mutans culture and water storage, but without difference between them. CPB had more homogenous hybrid layer than SBM. Fluoride/MDPB-containing adhesive system did not prevent degradation of CAD bond strength in both degradation methods.  相似文献   

7.
The aim of this in vitro study was to evaluate the effect over time of zinc chloride (ZnCl2) incorporated into the primer of a two-step self-etching adhesive system (Clearfil SE Bond, Kuraray - SE) on long-term microtensile bond strength (μTBS) to caries-affected dentin (CAD), and on flexural strength (FS) and conversion degree (CD) of the adhesive. First, the CD of SE with and without 2% (wt) ZnCl2 solution was evaluated by Fourier transform infrared spectroscopy (FTIR). Then, beam-shaped samples (7 mm × 2 mm x 1 mm) were prepared with the SE primer containing the ZnCl2 solution, to perform flexural strength (FS) tests. For μTBS testing purposes, CAD surfaces were randomly divided into two groups, according to the presence of ZnCl2 powder (2 wt%) incorporated into the adhesive system (ZnCl2), or its absence (NT). An additional group consisting of dentin pretreated with a 2% chlorhexidine digluconate (CHX) solution was proposed as a positive control (n = 10). A two-step self-etching system (SE) was applied following the manufacturer's instructions, and restorations of composite resin were built up on the dentin. After 24 h, the resin-dentin blocks were sectioned into specimens that were submitted to μTBS testing immediately following, or after 12 months of water storage (WS). Both μTBS and FS tests were performed using a universal testing machine (0.5 mm/min). FS and CD data were submitted to the Student t-test, and μTBS data were submitted to two-way ANOVA and Tukey's test (α = 0.05). ZnCl2 incorporation had no statistically significant influence on flexural strength (p = 0.88) or conversion degree (p = 566). Regarding μTBS, no significant effect of the double interaction of “dentin treatment” versus “WS period” (p = 0.546) was observed. The bond strength was not affected by the WS period (p = 0.805). The highest mean bond strength was observed for the NT group, which did not differ from the ZnCl2 group. The lowest mean bond strength was observed for the CHX group, which differed statistically from the NT group (p = 0.053). It was concluded that incorporation of ZnCl2 into the SE self-etching primer did not interfere in the bond strength of caries-affected dentin, in regard to failure mode, flexural strength or CD, and had no other beneficial effects.  相似文献   

8.
This study evaluated the effect of airborne-particle abrasion with niobium phosphate bioglass (NbG) microparticles on the bond strength (μTBS) and longevity of an adhesive system to different dentin substrates. In this study, 18 Caries-free molars were used, of which 12 were microbiologically processed for caries induction. The dentin surfaces were evaluated in three groups: (1) Control – Healthy Dentin; (2) Partial removal of carious tissue; (3) complete removal of carious tissue. Half the teeth in each group were submitted to airborne-particle abrasion with NbG microparticles (15 s/1 cm/5 bar). After this, the adhesive Clearfil S3 was applied and composite buildups were constructed incrementally; and specimens were longitudinally sectioned to obtain bonded sticks (1.0 mm2) to be tested in tension (0.5 mm/min) immediately or after 6 months of storage in water. The fracture patterns were evaluated by stereomicroscope (40×) and then by scanning electron microscopy. The data were analyzed by the Kruskal-Wallis (post hoc Dunn) and Mann-Whitney tests (α = 0.05). Healthy dentin showed the highest bond strength (μTBS). Airborne-particle abrasion with NbG increased the μTBS values in the Group with complete caries removal. The bond strength values in the 24-h period were higher than those at 6 months. In the majority of the specimens the fracture mode was adhesive/mixed. The authors concluded that airborne-particle abrasion on dentin with NbG particles increased the μTBS in the group in which carious dentin was completely removed.  相似文献   

9.
Objective: This study investigated the effect of saliva contamination and cleansing effect of a self-etching primer (SEP), phosphoric acid (PA), chlorhexidine (CHX), and ethanol (EtOH) on the microtensile bond strength (μTBS) of a fiber post cemented with a self-adhesive resin cement (SAC) to root canal dentin.

Material and methods: Sixty human lower premolar roots were randomly divided into 10 groups: (1) no saliva contamination, no cleansing (Control); (2) no saliva contamination, cleansing with SEP (NC-SEP); (3) no saliva contamination, cleansing with PA (NC-PA); (4) no saliva contamination, cleansing with CHX (NC-CHX); (5) no saliva contamination, cleansing with EtOH (NC-EtOH); (6) with saliva contamination, no cleansing (SC-NC); (7) with saliva contamination, cleansing with SEP (SC-SEP); (8) with saliva contamination, cleansing with PA (SC-PA); (9) with saliva contamination, cleansing with CHX (SC-CHX); (10) with saliva contamination, cleansing with EtOH (SC-EtOH). After cementation of posts, the roots were transversally sectioned to obtain six slices (n = 36) followed by μTBS test. Data were analyzed with ANOVA and Tukey HSD tests (p = 0.05).

Results: Saliva contamination and cleansing methods had a significant effect on μTBS values (p < 0.0001). All cleansing agents improved bond strengths when compared with Control and SC-NC. Cleansing with CHX and ethanol showed lower μTBS values than phosphoric acid and SEP, regardless of saliva contamination (p < 0.05).

Conclusions: Saliva contamination negatively affected bonding performance of SAC to root dentin. However; SEP, PA, CHX and EtOH can be used on contaminated dentin surfaces to optimize bonding performance of self-adhesive cements.  相似文献   

10.
This study investigated the resin–dentin bond strength (μTBS), degree of conversion (DC), and antibacterial potential of an innovative adhesive system containing a quaternary ammonium methacrylate polymer (QAMP) using in situ and in vitro assays. Forty-two human third molars were flattened until the dentin was exposed and were randomly distributed into three groups of self-etching adhesive systems: Clearfil™ SE Bond containing 5% QAMP (experimental group), Clearfil™ Protect Bond (positive control) and Clearfil™ SE Bond (negative control). After light curing, three 1 mm-increments of composite resin were bonded to each dentin surface. A total of thirty of these bonded teeth (10 teeth per group) was sectioned to obtain stick-shaped specimens and tested under tensile stress immediately, and after 6 and 12 months of storage in distilled water. Twelve bonded teeth (4 teeth per group) were longitudinally sectioned in a mesio-to-distal direction to obtain resin-bonded dentin slabs. In situ DC was evaluated by micro-Raman spectroscopy. In vitro DC of thin films of each adhesive system was measured using Fourier transform infrared spectroscopy. In vitro susceptibility tests of these three adhesive systems were performed by the minimum inhibitory/minimum bactericidal concentration (MIC/MBC) assays against Streptococcus mutans, Lactobacillus casei, and Actinomyces naeslundii. No statistically significant difference in μTBS was observed between Clearfil™ SE Bond containing 5% QAMP and Clearfil™ SE Bond (p > 0.05) immediately, and after 6 and 12 months of water storage. However Clearfil™ Protect Bond showed a significant reduction of μTBS after 12 months of storage (p = 0.039). In addition, QAMP provided no significant change in DC after incorporating into Clearfil™ SE Bond (p > 0.05). Clearfil™ SE Bond containing 5% QAMP demonstrated MIC/MBC values similar to the positive control against L. casei and A. naeslundii and higher than the negative control for all evaluated bacterial strains. The use of QAMP in an adhesive system demonstrated effective bond strength, a suitable degree of conversion, and adequate antibacterial effects against oral bacteria, and may be useful as a new approach to provide long-lasting results for dental adhesives.  相似文献   

11.
The aim of this study was to evaluate the influence of an iodonium salt on the immediate and long-term microtensile bond strength to dentin of an experimental dental two-step, self-etching adhesive system. A model dental adhesive resin was formulated using bisphenol A glicidyl dimethacrylate (Bis-GMA), triethylene glicol dimethacrylate (TEGDMA), and hydroxyethyl methacrylate (HEMA), which was polymerized using four combinations of photo-initiators and coinitiators. A group using only camphorquinone (CQ), two binary systems (CQ and ethyl 4-dimethylamine benzoate (CQ+EDAB), CQ and diphenyliodonium hexafluorphosphate (CQ+DPIHFP)) and a ternary system (CQ+EDAB+DPIHFP) was investigated. Clearfil SE Bond (CSEB) was used as a commercial reference. Bond strength to bovine dentin was assessed through microtensile bond tests measured in MPa in a universal testing machine. The beam specimens were stored in distilled water at 37 °C for 24 h and 1 year. Two-way ANOVA and Student–Newman–Keuls' post-hoc tests were used to compare means of groups (α=5%) and failure modes classified under magnification. After 24 h, the ternary system showed a bond strength similar to that of the binary system CQ+EDAB and the commercial material. After 1 year of storage, the μTBS values of the group CQ+EDAB+DPIHFP showed a bond strength significantly higher (p<0.05) than those of the CQ, CQ+DPIHFP, and CQ+EDAB groups and no difference from that of the CSEB group. The ternary photo-initiator system with iodonium salt maintained increased bond strength to dentin of model self-etching adhesive systems after 1 year of aging.  相似文献   

12.
This study evaluated how a matrix metalloproteinase (MMP) inhibitor (EGCG) incorporated into an etch-and-rinse adhesive system (AS) affects the long-term microtensile bond strength (MTBS) to caries affected dentin (CAD) and flexural strength (FS) of AS. Forty CAD surfaces received acid conditioning and were randomly divided into four groups (n?=?10): EGCG-PRE – dentin treatment with 200?μg/mL EGCG solution; EGCG-INC – 200?μg/mL EGCG solution incorporated into SA; CHX-PRE – dentin treatment with 2% digluconate solution; NT – no treatment. The AS (Adper Single Bond 2, 3M ESPE) was applied and resin composite blocks were built on the dentin. Beam-shaped specimens (0.8?mm2) were obtained submitted to MTBS testing following 24?h, 6 months or 1 year of water storage (WS). Adhesive interface was analyzed by SEM. FS testing was performed by preparing specimens with the adhesive system, with or without the EGCG solution (200?μg/mL) (n?=?10). Tests were carried out in a universal machine (0.5?mm/min). MTBS data were submitted to two-way ANOVA and Tukey’s test, whereas FS data, to the Student’s t-test (α?=?0.05). MTBS values were not affected by EGCG application, either incorporated or used as a dentin treatment agent, regardless of the WS period; however, CHX negatively affected MTBS to CAD (p?<?0.001). WS significantly reduced MTBS values (p?<?0.001) from the 6-months time point. FS was not affected by EGCG incorporation into the SA (p?=?0.2527). EGCG incorporation into AS was unable to maintain bond stability to CAD over time, whereas it did not compromise adhesive’s property.  相似文献   

13.
This study investigated the effect of antimicrobial agents on the antibacterial potential of a one-step dental adhesive. Zinc silicate microparticles (ZnSi), silver microparticles (Ag), or essential oil of tea tree (terpinen-4-ol, Tr) were added at 0.5 wt% or 1 wt%. Additional analysis included pH, degree of C=C conversion (DC), translucency parameter (TP), water sorption/solubility (WSR/SL), morphology of bonded interfaces, and dentin microtensile bond strengths (µTBS) after 24 h or 6 months. Antibacterial potential was assessed using a microcosm biofilm model. Data were statistically analyzed at α=0.05. DC, WSR/SL, and bonding morphology were not affected by antimicrobial incorporation. ZnSi and Ag increased pH and improved immediate µTBS, generating more stable dentin bonds after 6 months. Tr showed the poorest results for µTBS. Ag 1% was the adhesive with lower TP. In general the best antibiofouling results were observed for Ag 0.5 wt%, although all antibacterial agents showed some antibiofouling effect.  相似文献   

14.
This study evaluated the effect of 2% chlorhexidine gluconate-based cavity disinfectant (CHX) on the microtensile bond strength (μTBS) of glass ionomer, resin-modified glass ionomer and packable resin composite to sound and caries-affected dentin. Sound and occlusal caries-affected human third molars (N?=?36, n?=?3 per group) were randomly divided into three experimental groups to receive one of the following restorative materials. (a) Glass ionomer (Ketac Molar, 3 M ESPE; GI), (b) resin-modified glass ionomer (Vitremer, 3 M ESPE; RMGI) and (c) packable resin composite (Surefil, Dentsply; PRC) with a bonding agent (Prime Bond NT, Dentsply De Trey). Caries was removed using a caries-detecting dye (Caries Detector, Kuraray Medical Ltd.) and flat dentin surfaces were achieved by finishing up to 1200-grit silicon carbide abrasive. Half of the teeth in each group received 2% CHX (Consepsis, Ultradent). Dentin surfaces were built-up with the respective materials incrementally and were sectioned with a slow-speed saw into multiple beams. The beams were subjected to μTBS test (0.5 mm/min) in a Universal Testing Machine. The data were analysed using two-way analysis of variance and Tukey’s tests. For each restorative material, μTBS results were not affected by the application of CHX (p?>?0.05) on both sound and caries-affected dentin (p?>?0.05). PRC in combination with the corresponding bonding agent showed significantly higher results (p?<?0.05) than those of GI and RMGI, on sound and caries-affected teeth, respectively. Cohesive failure in dentin was not observed in any of the groups. The use of 2% chlorhexidine-based cavity disinfectant did not impair the adhesion of the restorative materials tested to either sound or caries-affected dentin.  相似文献   

15.
The aim of this in vitro investigation was to evaluate the effects of different dentin treatments on µTBS values of three different universal adhesives. Sixty extracted bovine incisors were used. The teeth were horizontally sectioned from the enamel-cement junction and embedded in an acrylic resin. Enamel was removed with 180-grit SiC paper to expose dentin. The exposed dentin surfaces were further polished with 600-grit SiC paper to provide a standardized smear layer. Teeth were randomly divided into three groups, according to the universal adhesives: All-Bond Universal, Single Bond Universal, and G-Bond Plus. Each group was then assigned into four subgroups, according to the dentin treatments: etch-and-rinse mode (ER), ER + 2% chlorhexidine (CHX), ER + %2.5 genipin (GE), and self-etch mode (SE). Samples were longitudinally sectioned across the bonded-interfaces to obtain resin-dentin beams. Beams were prepared from the same teeth were randomly and equally divided into two groups: immediate µTBS testing and µTBS testing after 6-month. The failure loads were recorded in MPa, and failure modes were evaluated at 30× magnification. The data were analyzed using a two-way ANOVA, to determine the effects of dentin treatment and storage time, and the interaction of these two factors on the µTBS of universal adhesives. Dentin treatments were showed significant differences (p?<?0.05). ER mode exhibited higher µTBS than SE mode. However, universal adhesives were more durable in the SE mode than ER mode. Also, chlorhexidine treatment significantly improved adhesive performance of all universal adhesives, while no significant improvement was detected with genipin treatment.  相似文献   

16.
This study investigated the effect of different monomeric systems and inorganic fillers on the physical properties of experimental resin adhesives and on the immediate and 6-month bond strength to dentin. Two, 2-step self-etch adhesive systems were prepared: two primers (constituted of GDMA-P, ethanol, water, and HEMA or PEG(400)-UDMA) and two adhesives (constituted of Bis-GMA, TEGDMA, and HEMA or PEG(400)-UDMA). Next, the adhesives were allocated into three groups according to filler incorporated: unfilled (control), silica (SiO2), or ytterbium trifluoride (YbF3). Degree of conversion (DC, after 30 and 60 s of light-activation), water sorption (WS) and solubility (SL), and flexural strength (σ) and modulus (Ef) tests were performed for all adhesives. A microtensile bond strength (µTBS) test to dentin was evaluated after 24 h (immediate) and 6 months (6-month) of water storage using a universal testing machine (DL500, EMIC). Data were analyzed using statistical tests (α=5%). The adhesives showed similar DC at a same light exposure time, although light-activation for 60 s improved conversion of monomers. The unfilled HEMA-containing adhesive showed higher WS, SL, σ and Ef compared to others. The incorporation of fillers into the adhesives did not affect negatively the immediate µTBS results; however, after 6 months the presence of SiO2 impaired in complete premature failures, and the presence of YbF3 reduced the µTBS in the PEG(400)-UDMA-based group. The unfilled HEMA-containing group also reduced bond strength after 6 months of water storage. In conclusion, depending on the resin matrix composition, YbF3 seems to be a good option for reinforcing adhesive systems.  相似文献   

17.
This study evaluated the performance of different bonding tests on the bond strength of three adhesive systems to dentin. Forty-eight bovine incisors were used in the study, which were allocated in two groups according to the bond strength test performed: microtensile (µTBS) or microshear (µSBS). Also, each group was divided in three subgroups according to the adhesive system applied: Single Bond (SB), Prime & Bond (PB) and XP Bond (XPB) (n=8). The teeth were prepared according to each bond strength test protocol, and then the specimens were tested in an universal testing machine (EMIC). The data were submitted to two-way ANOVA (bond strength test and adhesive system type factors) and Tukey's post hoc test (α=0.05). The µTBS results were higher for all the adhesives when compared to the µSBS ones. Within the µTBS results, SB showed higher bond strength than PB and XPB, which showed similar adhesive performance among each other; within the µSBS results, all the adhesives presented similar bond strength values to dentin. The µTBS test detected differences between the adhesive systems evaluated; in contrast, the µSBS test was less discriminating in evaluating the adhesive performance of the materials tested.  相似文献   

18.
The effect of application methods and dentin hydration on the bond strength of three self-etching adhesives (SEA) were evaluated; 195 extracted bovine incisors were used. The buccal surface was ground in order to expose the dentin, which remained 2-mm minimum thickness, measured by a thickness meter through an opening on the lingual surface. Adper Single Bond 2? was used for the control group. The SEA were applied following two modes of application: passive or active and two hydration states of the dentin surface—dry and wet. After light-curing, composite buildups were made using Grandio? composite. The specimens were sectioned and tested with a microtensile bond strength test. The application method and the hydration state resulted in statistical differences (p = 0.000) making the values of active application for μTBS to dentin higher than passive application. The wet surfaces showed higher μTBS to dentin ratios than dry surfaces. There were no statistical differences in μTBS among the SEA tested but there were differences regarding to control group.  相似文献   

19.
PurposeThis study aimed to evaluate the effect of heat treatment (at 77 °C) of a silanized feldspathic ceramic on microtensile bond strength (μTBS) with a resin cement before and after being aged by thermocycling.Material and methodsTwenty-four blocks (12×10×4 mm3) of a CAD/CAM feldspathic ceramic (Vitablocks Mark II, Vita) were obtained and randomly divided into three groups, according to the surface treatment prior to the cementation: Group AS – hydrofluoric acid 10%+silane; Group S77 – silane+heating at 77 °C for 60 s; and Group AS77 – hydrofluoric acid 10%+silane+heating at 77 °C for 60 s. Ceramic blocks were cemented to composite resin blocks with a resin cement. The sets were subsequently cross-sectioned into 1 mm2 beams for μTBS testing. The beams of each group were randomly divided into two subgroups: aging (thermocycling, 12,000 cycles between 5 °C and 55 °C) and non-aging (tested immediately). One-way ANOVA and Tukey's test (α=0.05) and Weibull analysis (95% CI) were used to analyze the data.ResultsGroup AS77 had the lowest pre-test failure number during the cutting among the groups. There was no significant difference (p=0.255) between the μTBS mean values of the non-aged groups. After aging, the mean value of S77 was significantly lower than those of AS77 and AS (p=0.005). There was no difference in the Weibull modulus (m) and characteristic strength (σ0) of the aged and non-aged groups for all comparisons. Before aging, heat treatment of silanized feldspathic ceramic (non acid-etched surface) demonstrated bond strength similar to that achieved with hydrofluoric-acid-etching treatment however, it had lower bond strength after aging.ConclusionThe combination of hydrofluoric-acid-etching treatment with heat treatment silanized feldspathic ceramic did not improve the bond strength of the interface.  相似文献   

20.
This study aimed at comparing the microtensile bond strength (µTBS) of three simplified luting strategies after different aging processes. Sixty human molars were prepared to expose flat middle dentin surfaces which received the following luting procedures: (i) SB+ARC – two-step etch-and-rinse adhesive+conventional resin cement (Adper Singlebond 2+RelyX ARC, 3M-ESPE); (ii) S3+PAN – one-step self-etch adhesive+conventional resin cement (Clearfil S3+Panavia F2.0, Kuraray Medical); (iii) U200 – self-adhesive resin cement (RelyX U200,3M-ESPE). The specimens were finally restored by indirect resin composite procedures (Filtek Z100,3M-ESPE). The aging regimens were water storage at 37 °C for one week (control), one week of 20 cm H2O simulated pulpal pressure (SPP), 200,000 mechanical loading (ML) cycles, or 5000 thermal cycles (TC). The µTBS data was analyzed by two-way ANOVA and Tukey's test (α=0.05). SB+ARC showed significantly higher µTBS for control and all aging processes (p<0.001). Nevertheless, TC had no effect on the bond strength of SB+ARC. No difference in µTBS was observed between S3+PAN and U200 after SPP (p=0.251), but significant lower values were found for U200 after ML (p=0.010) besides being superior in the control groups (p<0.001). For U200, all ageing regimens induced significant reductions in the bond strength (p<0.001) with a more pronounced negative effect after ML. S3+PAN showed significant lower bond strength (p=0.010) only after ML aging. Two-step etch-and-rinse adhesive associated with dual-curing conventional resin cement may present the highest overall µTBS. However, the use of S3 one-step self-etch adhesive along with conventional resin cements may provide the most stable luting performance under the tested aging strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号