首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this investigation, the fatigue life prediction of ZE41A magnesium alloy has been statistically analyzed by Weibull distribution. The mechanical fatigue tests are conducted under R = 0.1 axial tension condition on specimen machined at as cast and welded materials. The micro structural investigations performed shows strong influence of precipitation on the fatigue failure of material. The curve for maximum stress and cycles to failure has been constructed for above stated materials. Using Weibull, the probability distribution according to which the material will fail is obtained. The fracture surface of the specimens is studied using scanning electron microscope.  相似文献   

2.
Lightweight magnesium alloys are increasingly used in automotive and other transportation industries for weight reduction and fuel efficiency improvement. The structural application of magnesium components requires proper welding and fatigue resistance to guarantee their durability and safety. The objective of this investigation was to identify failure mode and estimate fatigue life of ultrasonic spot welded (USWed) lap joints of an AZ31B-H24 magnesium alloy. It was observed that the solid-state USWed joints exhibited a superior fatigue life compared with other welding processes. Fatigue failure mode changed from interfacial failure to transverse-through-thickness crack growth with decreasing cyclic load level, depending on the welding energy. Fatigue crack initiation and propagation occurred from both the notch tip inside the faying surface and the edge of sonotrode indentation-footprints due to the presence of stress concentration. A life prediction model for the spot welded lap joints developed by Newman and Dowling was adopted to estimate the fatigue lives of the USWed magnesium alloy joints. The fatigue life estimation, based on the fatigue crack growth model with the global and local stress intensity factors as a function of kink length and the experimentally determined kink angle, agreed fairly well with the obtained experimental results.  相似文献   

3.
The temperature gradient occurring for a short time during friction stir welding greatly affects the localized corrosion properties of welded 7050-T7451 plates. An immersion experiment in a salty solution was carried out in order to verify the influence of short-term post-weld heat treatments at temperatures similar to those taking place during friction stir welding on the corrosion behaviour of friction stir welded 7050-T7451. The experiment consisted of inserting thermocouples at different weld regions for the registration of the temperature development with time, and partially immersing the welded plate in a salty solution at 480 °C. In this manner, the weld experienced different temperature expositions at different locations. It was found that a temperature exposition above 180 °C for 20 min significantly increases the general corrosion resistance of friction stir welded 7050-T7451. The re-exposition of 7050-T7451 friction stir weld to a time–temperature combination similar to that occurring during the welding process on the thermomechanically heat affected zones of the weld, significantly improves the corrosion properties and the environmental cracking resistance. After the short-term temperature exposition, the fracture location of samples tested in a 3.5 wt.% NaCl solution moved from the corrosion susceptible thermomechanically affected zone to the heat affected zone.  相似文献   

4.
The long term natural aging behavior of friction stir welded aluminum 7136-T76 extrusions was investigated. The microstructural characteristics and mechanical properties in the as-welded, three years naturally aged and six years naturally aged conditions were studied and correlated to a coupled thermal/material flow model of the joining process. Hardness profiles taken along the mid-plane thickness of the workpiece displayed the characteristic W-shape typical to friction stir welded aluminum alloys. In the as-welded condition, however, the profile was skewed to the advancing side, such that the advancing side hardness was lower than that on the retreating side. With natural aging, hardness recovery occurred on both sides of the weld, but the position of the hardness minima, particularly on the advancing side, shifted away from the weld centerline. The numerical simulation demonstrated that the temperature profile is also skewed to the advancing side with greater processing temperatures occurring on this side of the weld. When compared to the dissolution temperature of the equilibrium phases, the extent of dissolution was greater on the advancing side and occurred to a greater distance from the centerline than on the retreating side. The hardness behavior upon natural aging, therefore, correlated to the temperature profile developed during welding and the degree to which phase dissolution occurred in the regions adjacent to the stir zone.  相似文献   

5.
Friction spot welding (FSpW) was applied to join the 7B04-T74 aluminum alloy successfully, and effects of sleeve plunge depth on weld appearance, microstructures and mechanical properties were investigated in detail. When the sleeve plunge depth was larger than 2 mm, a surface indentation with a depth of 0.2 mm should be applied in order to eliminate the defect of annular groove. The tensile shear properties of the joints were dependent on hook geometry, location of alclad layer, and hardness of stir zone (SZ). With increasing the sleeve plunge depth from 2 to 3.5 mm, the hook height increased, the alclad layer downward migrated further and the hardness of SZ decreased. The optimized FSpW joint was obtained when the sleeve plunge depth was 3 mm, and the corresponding tensile shear failure load was 11921 N. Two different failure modes, i.e. shear fracture mode and tensile-shear mixed fracture mode, were observed in the tensile shear tests.  相似文献   

6.
In recent years, with higher demand for improved quality and corrosion resistance, recovered substrates have been extensively used. Consequently residual stresses originated from these coatings reduce the fatigue strength of a component. Due to this negative influence occasioned by corrosion resistance protective coatings, an effective process like shot peening must be considered to improve the fatigue strength. The shot peening treatment pushes the crack sources beneath the surface in most of medium and high cycle cases due to the compressive residual stress field (CRSF) induced. The aim of this study was to evaluate the influence on the fatigue life of anodic films grown on 7050-T7451 aluminium alloy by sulphuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on the rotating and reverse bending fatigue strength of anodic films grown on the aluminium alloy is to degrade the stress life fatigue performance of the base material. A consistent gain in fatigue life in relation to the base material was obtained through the shot peening process in coated specimens, associated to a residual stress field compressive near the surface, useful to avoid fatigue crack nucleation and delay or even stop crack propagation.  相似文献   

7.
Few papers have discussed the friction stir welding (FSW) of particulate reinforced aluminium matrix composites and most of them focused on the set-up of the welding process parameters and their effect on microstructure, hardness and tensile behaviour. The aim of this study was to investigate the fatigue resistance of FSW joints on an as-cast particulate reinforced aluminium based composite (AA6061/22 vol.%/Al2O3p). The welding process was performed using different process parameters, also investigating their effect on joint microstructure. The mechanical properties of the FSW composites were compared with those of the base material and the results were correlated to the microstructural modifications induced by the FSW process on the aluminium alloy matrix and the ceramic reinforcement. FSW reduced the size of both particle reinforcement and aluminium grains, and also led to a significant increase in interparticle matrix microhardness, for all process parameters. The FSW specimens belonging to a different set of parameters, tested without any post-weld heat treatment, exhibited a very high joint efficiency (ranging from 90% to 99%) with respect to the ultimate tensile strength of the base material. The stress controlled fatigue test showed a high spread both for the base and FSW composites. Statistical analysis disclosed that all FSW specimens belonging to different process parameters showed apparently slightly worse fatigue behaviour than that of the base composite. Statistical processing applied to the different welding parameters revealed that all the welded specimens belonged to the same population. Therefore it can be concluded that the parameters used produced joints with similar microstructure and comparable fatigue behaviour. The slight difference in the fatigue behaviour of the FSW specimens whose process parameters differed form those of the unwelded composite was explained by the different microstructural homogeneity in the transition from the base to the FSW zone.  相似文献   

8.
This paper presents the results of experimental investigation on fatigue behaviors of friction stir welded joints in AA7075-T6 with ultrasonic fatigue test system (20 kHz). Two kinds of particles, Fe-rich intermetallic compounds and Mg2Si-based particles, governed the fatigue crack initiation. The plastic deformation and recrystallization during welding process led to the changes in particle size and micro crack occurrence between thermo-mechanically affected zone (TMAZ) and nugget zone (NZ). Therefore, the fatigue crack initiation sites leaned to be located at the TMAZ in short fatigue life, or at the NZ in very high cycle fatigue regime.  相似文献   

9.
In this study, the effects of main welding parameters(rotation speed(ω) and welding speed(v)) on the microstructure, micro-hardness distribution and tensile properties of friction stir welded(FSW)2195-T8 Al-Li alloy were investigated. The effects of T6 post-treatments at different solution and aging conditions on the mechanical properties and microstructure characteristics of the FSW joints were also investigated. The results show that with increasing and v, both strength and elongation of the joints increase first, and then decrease with further increase of and v. All the joints under varied welding parameters show significant strength loss, and the strength reaches only 65% of the base metal. The effect of T6 post-heat treatment on the mechanical properties of the joints depends on the solution and aging conditions. Two heat treatment processes(480℃× 0.5 h quenching + 180℃× 12 h,520℃× 0.5 h quenching + 180℃× 12 h aging) are found to increase the joint strength. Furthermore,low temperature quenching(480℃) is more beneficial to the joint strength. The joint strength can reach 85% of the base metal. Whereas both low temperature aging(140℃× 56 h) and stepped aging(100℃× 12 h + 180℃× 3 h) processes decrease the joint strength. After heat treatment all the joints show decreased ductility due to the obvious grain coarsening in the nugget zone(NZ) and thermo-mechanically affected zone(TMAZ).  相似文献   

10.
This paper reports the effect of post weld heat treatment on fatigue behaviour of electron beam welded AA2219 aluminium alloy. An attempt has been made to enhance the fatigue strength of the electron beam welded joints through post weld heat treatment methods such as solution treatment, artificial aging, solution treatment and artificial aging. Electron beam welding machine with 100 kV capacity has been used to fabricate the square butt joints. Servo hydraulic controlled fatigue testing machine with a capacity of 100 kN has been used to evaluate the fatigue life of the welded joints. Of the three post weld heat treated joints, the solution treated and aged joints are enduring higher number of cycles under the action of cyclic loads.  相似文献   

11.
Hook defect (HD) seriously decreases the mechanical properties of friction stir spot welded (FSSW) joints. In this study, two methods were therefore used to eliminate the HD in pinless FSSW joints. The one is changing welding parameters such as rotating speed and dwell time. The other one is FSSW plus subsequent friction stir welding (FSSW-FSW), which is an innovative method proposed in this study. Experimental results showed that the HD in pinless FSSWed AA2024 joints was successfully eliminated by using FSSW-FSW, not by changing process parameters. The joints without HD exhibited a tensile–shear load of as much as 12 kN, which was higher than that of 6.9 kN in the joints with HD. Furthermore, it was proved that the tensile–shear load is not greatly improved only by increasing the nugget zone when HD still existed in the FSSW joints. In addition, the fracture morphology analysis demonstrated that the shear fracture of the FSSW-FSW joints took place along the boundary between the upper and lower sheets through the weld nugget, and the faying surface between the two sheets was completely sheared off.  相似文献   

12.
Fatigue behavior of double spot friction welded joints in aluminum alloy 7075-T6 plates is investigated by conducting monotonic tensile and fatigue tests. The spot friction welding procedures are carried out by a milling machine with a designed fixture at the best preliminary welding parameter set. The fatigue tests are performed in a constant amplitude load control servo-hydraulic fatigue testing machine with a load ratio of (R = Pmin/Pmax) 0.1 at room temperature. It is observed that the failure mode in cyclic loading (low-cycle and high-cycle) resembles that of the quasi-static loading conditions i.e. pure shearing. Primary fatigue crack is initiated in the vicinity of the original notch tip and then propagated along the circumference of the weld’s nugget.  相似文献   

13.
Local melting and the eutectic film and liquation crack formation mechanisms during friction spot welding (FSpW) of Al-Zn-Mg-Cu alloy were studied by both experiment and finite element simulation. Their effects on mechanical properties of the joint were examined. When the welding heat input was high, the peak temperature in the stir zone was higher than the incipient melting temperature of the Al-Zn-Mg-Cu alloy. This resulted in local melting along the grain boundaries in this zone. In the retreating stage of the welding process, the formed liquid phase was driven by the flowing plastic material and redistributed as a “U-shaped” line in the stir zone. In the following cooling stage, this liquid phase transformed into eutectic films and liquation cracks. As a result, a new characteristic of “U” line that consisted of eutectic films and liquation cracks is formed in the FSpW join. This “U” line was located in the high stress region when the FSpW joint was loaded, thus it was adverse to the mechanical properties of the FSpW joint. During tensile shear tests, the “U” line became a preferred crack propagation path, resulting in the occurrence of brittle fracture.  相似文献   

14.
An extensive study on the fatigue performance of friction stir welded DH36 steel was carried out. The main focus of this experimental testing programme was fatigue testing accompanied by tensile tests, geometry measurements, hardness and residual stress measurements, and fracture surface examination. The SN curve for friction stir butt welded joints was generated and compared with the International Institute of Welding recommendations for conventional fusion butt welds. Friction stir welds of marine grade steel exceeded the relevant rules for fusion welding. This newly developed SN curve is being proposed for use in the relevant fatigue assessment guidelines for friction stir welding of low alloy steel. Fracture surfaces were examined to investigate the fatigue failure mechanism, which was found to be affected by the processing features generated by the friction stir welding tool.  相似文献   

15.
Fatigue of friction stir welds in aluminium alloys that contain root flaws   总被引:9,自引:0,他引:9  
Although the vast majority of friction stir welds will be free of flaws, it is not always possible to assume that they are. The properties of welds with flaws are needed to enhance confidence in the design and application of friction stir welded joints. The monotonic strength and fatigue behaviour of single-sided butt welds in 6–7 mm thick AA5083-O, AA5083-H321 and AA6082-T6, both without and with root flaws, was investigated.

Examination of the root flaw faces showed that there was bonding between the flanks of the flaws but the bonding was of poor quality and incomplete. This meant that the strength and ductility of the flaws were lower than the surrounding material. However, the comparison of the mechanical test results suggests that root flaws up to a certain size are tolerable without a significant loss in performance when compared to nominally flaw-free welds. These data also suggest that even friction stir welds with root flaws exceed the design life for equivalent fusion welds set out in the draft Eurocode 9 and that a higher rating may be warranted. Limited test results produced for this work need to be supplemented with a wider range of tests.  相似文献   


16.
Solid-state welding processes like friction welding and friction stir welding are now being actively considered for welding aluminum alloy AA7075. In this work, friction welding of AA7075-T6 rods of 13 mm diameter was investigated with an aim to understand the effects of process parameters on weld microstructure and tensile properties. Welds made with various process parameter combinations (incorporating Taguchi methods) were subjected to tensile tests. Microstructural studies and hardness tests were also conducted. The results show that sound joints in AA7075-T6 can be achieved using friction welding, with a joint efficiency of 89% in as-welded condition with careful selection of process parameters. The effects of process parameters are discussed in detail based on microstructural observations.  相似文献   

17.
Lightweight alloys are of major concern, due to their functionality and applications in transport and industry applications. Friction stir welding (FSW) is a solid-state welding process for joining aluminum and other metallic alloys and has been employed in aerospace, rail, automotive and marine industries. Compared to the conventional welding techniques, FSW produces joints which do not exhibit defects caused by melting. The objective of the present study is to investigate the surface hardness (H) and elastic modulus (E) in friction stir welded aluminum alloy AA6082-T6. The findings of the present study reveal that the welding process softens the material, since the weld nugget is the region where the most deformations are recorded (dynamic recrystallization, production of an extremely fine, equiaxial structure), confirmed by optical microscopy and reduced nanomechanical properties in the welding zone. A yield-type pop-in occurs upon low loading and represents the start of phase transformation, which is monitored through a gradual slope change of the load-displacement curve. Significant pile-up is recorded during nanoindentation of the alloy through SPM imaging.  相似文献   

18.
Friction spot welding (FSpW) is a solid state welding process suitable for spot joining lightweight low melting point materials like aluminium and magnesium alloys. The process is performed by plunging a rotating three-piece tool (clamping ring, sleeve and pin) that creates a connection between sheets in overlap configuration by means of frictional heat and mechanical work. The result is a spot welded lap connection with minimal material loss and a flat surface with no keyhole. FSpW has been performed in a 1.7 mm-thick AA6181-T4 aluminium alloy using different welding parameters (rotation speed and joining time) aiming to produce high quality connections in terms of microstructure and mechanical performance. Microstructural features of the FSpW connections were analysed by optical microscopy; while mechanical performance was investigated in terms of hardness and tensile testing. Connections with shear strength close to 7 kN were obtained with high reproducibility. The results also showed that geometric features of the connection play an important role on the fracture mechanism and hence on the mechanical performance of the connections.  相似文献   

19.
In this study, AA 6063-T6 alloy plates were joined via friction stir welding using three different pin geometries (i. e., helical threaded, pentagonal and triangular) under various process parameters of tool rotational speed and welding speed. The microstructures and mechanical properties of the various welded joints were investigated. Macro-structural observations revealed that kissing bonds occurred in the welded joints due to fractured oxide layers. X-ray diffraction analysis indicated that the stir zones of the welded joints exhibited phases of Al8Fe2Si, Al5FeSi, and Mg2Si. In the welded joints, processed using a helical threaded pin, no tunnel-type defect was detected to occur; specimens were fractured outside of the joint region during tensile tests, indicating that the kissing bonds formed in the stir zones did not cause any deterioration in tensile strength or ductility. The welded joints processed using a helical threaded, pentagonal and triangular pin at 500 min−1 tool rotational speed and 80 mm min−1 welding speed exhibited a ductile deformation behavior along with a tensile strength in the range of 153 MPa to 155 MPa.  相似文献   

20.
The effect of the friction stir welding process on the toughness properties of AA6013-T6 sheet has been investigated. The alloy was received and welded in the peak aged T6 condition and the toughness measured at intervals across the weld by means of a notched tear test, with subsequent fractographic examination via field emission gun scanning electron microscope (FEGSEM) and microstructural characterisation via optical microscopy and energy dispersive X-ray (EDX). It is shown that the controlling factors for toughness in AA6013-T6 following FSW are the population and distribution of the coarse α-(Al,Fe,Si,Mn) intermetallic particles, with strength variations caused by precipitate dissolution, coarsening and transformation representing a secondary consideration. Minimum toughness occurs at the boundary between the weld nugget and the heat-affected zone due to the alignment and concentration of coarse particles at this point by the FSW process. A simple model is implemented and provides a reasonable prediction of the weld toughness from simple microstructural observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号