首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multi heat pumps have been widely used in buildings due to their higher energy efficiency. Recently, demands for multi-functional heat pumps, which can provide heating, cooling, and water heating in a building, have been increased. In this study, a cascade multi-functional heat pump, combining a multi heat pump using R410A for air heating with a water heating unit using R134a for hot water supply, was investigated experimentally. The performance of the cascade multi-functional heat pump was measured by varying the refrigerant charge amount, EEV opening, water flow rate, and water inlet temperature. Test results were compared with those of a single-stage multi-functional heat pump using R410A for air and water heating. The cascade multi-functional heat pump adopting the water heating unit showed more stable air and water heating operations and higher water outlet temperatures than the single-stage multi-functional heat pump.  相似文献   

2.
蒸发冷却+空气源热泵复合冷(热)水机组夏季能耗分析   总被引:1,自引:0,他引:1  
蒸发冷却+空气源热泵复合冷(热)水机组由蒸发冷却段和机械制冷段组成,蒸发冷却段是蒸发冷却式冷水机组,机械制冷段是直接蒸发冷却器(DEC)与空气源热泵冷(热)水机组的联用。本文首先对DEC+空气源热泵冷(热)水机组的夏季能耗进行分析,并与传统的单独运行空气源热泵冷(热)水机组的情况进行对比;另外从压一焓图和温一熵图角度分析空气源热泵冷(热)水机组联用DEC后能效比提高的机制;然后以西安地区为例对蒸发冷却+空气源热泵复合冷(热)水机组进行夏季能耗分析,推导出单独利用蒸发冷却技术就能制取18℃左右高温冷水的气候条件。为蒸发冷却制取冷水技术在中等湿度地区甚至高湿度地区的应用提供理论依据。  相似文献   

3.
普通热泵空调系统在超低温环境下制热衰量减大,难以满足中国北方冬季取暖需求,在一套普通R410A风冷冷(热)水机组上分别对喷液技术和EVI技术进行超低温环境测试对比。结果表明,喷液系统和EVI系统在低温和超低温下具有较好的制热量及制热能效的提升,并且可以解决普通热泵在超低温环境下的应用问题,同时R32的热物理性质与R410A基本相同,提出在低温风冷冷(热)水机组上使用R32替代R410A的设想。  相似文献   

4.
以R410A为制冷剂设计的一套小型家用风冷冷水机组。标准工况下,该机组的设计制冷量和制热量分别为16.5kW和18.0kW。在系统热力计算的基础上,介绍了以R410A为制冷剂的小型家用风冷冷水机组设备选型过程,选用了制冷量和制热量分别为16.89kW和19kW的全封闭涡旋式压缩机、实际总管长144m和实际传热面积70.24m2的翅片管式换热器作风侧换热器,板间距为0.0032m、单片传热面积为0.12m2的板式换热器作水侧换热器,毛细管作节流装置等。  相似文献   

5.
对比R32与R410A的基本物性和热力循环性能,并在同一台家用定频热泵空调器上进行性能测试。相对于R410A,在给定工况下,R32的理论循环制冷量最大可提高15%,能效比最大提高6%,容积制冷量和容积制热量增加7%~8.9%。性能测试结果表明,R32系统的制冷剂充注量比R410A系统的减少24%,额定制冷能力和能效比比R410A系统分别提高8%和3.3%,额定制热能力和性能系数也高于R410A系统。理论热力循环分析及性能测试结果均表明,R32制冷性能相对R410A有较大幅度的提高,制热性能比R410A略高或相当,但R32系统的排气温度较高,比R410A系统高出11.5~25.7℃,恶劣工况下排气温度甚至能达到114.9℃。  相似文献   

6.
Food processing has significant simultaneous requirements of cooling, warm water and hot water. In order to reduce energy consumption and greenhouse gases emission, one type of NH3 heat pump and two types of transcritical CO2 heat pumps are proposed. These natural refrigerant heat pumps can supply not only cooling, but also warm water and hot water simultaneously. The characteristics and performance of the heat pumps are analyzed and simulated. Annual primary energy saving and annual operation cost saving are predicted for California, Wisconsin, New York, and Florida. Research results show that the maximum possible value of annual primary energy-saving rates using the CO2 heat pumps ranges from 56% to 65%, and using the NH3 heat pump is approximately 44%; the maximum possible value of annual operation cost saving rates using the CO2 heat pumps ranges from 50% to 66%, and using the NH3 heat pump is from 20% to 47%.  相似文献   

7.
Air (reversed Brayton) cycle has been utilized in the area of refrigeration and cryogenics for several decades, but its potentials in heat pump applications were longtime underestimated. In this paper, a thermodynamic model for the regenerated air heat pump cycle with practical compressor, expander and regenerated heat exchanger was developed. Based on the model, the relations between the system performance and the operating parameters were analyzed. The optimal heating COP (coefficient of performance) and the corresponding pressure ratio were derived. Then, air heat pump cycles (regenerated cycle and basic cycle) and vapor-compression heat pump cycles (CO2 trans-critical cycle and R410A subcritical cycle) were numerically compared. The results indicated that the regenerated air heat pump cycle not only gets the heating capacity in line with the heating load under different operating conditions but also achieves higher COP over trans-critical CO2 heat pump cycle in applications of large temperature difference.  相似文献   

8.
This article presents a Heat Pump for Simultaneous heating and cooling (HPS) designed for hotels, luxury dwellings and smaller office buildings. The main advantage of the HPS is to carry out simultaneously space heating and space cooling in a dual mode. The ambient air is used as a balancing source to run a heating or a cooling mode. The HPS also participates to domestic hot water preparation all year round. The second advantage is that, during winter, some energy recovered by subcooling of the refrigerant is stored at first in a cold water tank that is not used for cooling. This energy is used subsequently as a cold source at the water evaporator in order to improve the average coefficient of performance and to run a defrosting sequence at the air evaporator. Two refrigerants are studied: HFC R407C and carbon dioxide. HFCs provide good performance, but new restrictive regulations on F-gases lead us to study low-GWP refrigerants as well. Highly efficient models of compressors and heat exchangers have been defined. Annual simulations show that CO2 is a refrigerant which adapts rather well to the operation of the HPS thanks to the higher amount of energy available by subcooling and the large temperature glide at heat rejection used for DHW production.  相似文献   

9.
A theoretical and experimental study has been carried out for a residential brine-to-water CO2 heat pump system for combined space heating and hot water heating. A 6.5 kW prototype heat pump unit was constructed and extensively tested in order to document the performance and to study component and system behaviour over a wide range of operating conditions. The CO2 heat pump was equipped with a unique counter-flow tripartite gas cooler for preheating of domestic hot water (DHW), low-temperature space heating and reheating of DHW.

The CO2 heat pump was tested in three different modes: space heating only, DHW heating only and simultaneous space heating and DHW heating. The heat pump unit gave off heat to a floor heating system at supply/return temperatures of 33/28, 35/30 or 40/35 °C, and the set-point temperature for the DHW was 60, 70 or 80 °C. Most tests were carried out at an evaporation temperature of −5 °C, and the average city water temperature was 6.5 °C. The experimental results proved that a brine-to-water CO2 heat pump system may achieve the same or higher seasonal performance factor (SPF) than the most energy efficient state-of-the-art brine-to-water heat pump systems as long as: (1) the heating demand for hot water production constitutes at least 25% of the total annual heating demand of the residence, (2) the return temperature in the space heating system is about 30 °C or lower, (3) the city water temperature is about 10 °C or lower and (4) the exergy losses in the DHW tank are small.  相似文献   


10.
采用改进的温频法进行负荷计算,针对夏热冬冷地区某居住建筑的冷热源方案进行全寿命周期经济性分析。结果表明,采用地源热泵方案经济性最好,比空气源热泵节省费用约7.5%,比冷水机组加燃气锅炉方案节省费用约21.2%。同时,输配能耗占总能耗比重约20%,应优化设计输配系统,降低输配能耗。采用地源热泵方案时,如能采用与冷却塔的复合运行模式,其运行能耗将进一步降低。  相似文献   

11.
Refrigerant vapor-injection technique has been well justified to improve the performance of systems in refrigeration applications. However, it has not received much attention for air conditioning applications, particularly for air conditioning in hot climates and for heat pumping in cold climates. In this study, the performance of an 11 kW R410A heat pump system with a two-stage vapor-injected scroll compressor was experimentally investigated. The vapor-injected scroll compressor was tested with the cycle options of both flash tank and internal heat exchanger configurations. A cooling capacity gain of around 14% with 4% COP improvement at the ambient temperature of 46.1 °C and about 30% heating capacity improvement with 20% COP gain at the ambient temperature of −17.8 °C were found for the vapor-injected R410A heat pump system as compared to the conventional system which has the same compressor displacement volume.  相似文献   

12.
A novel CO2 heat pump system was provided for use in fuel cell vehicles, when considering the heat exchanger arrangements. This cycle which had an inverter-controlled, electricity-driven compressor was applied to the automotive heat pump system for both cooling and heating. The cooling and heating loops consisted of a semi-hermetic compressor, supercritical pressure microchannel heat exchangers (a gas cooler and a cabin heater), a microchannel evaporator, an internal heat exchanger, an expansion valve and an accumulator. The performance characteristics of the CO2 heat pump system for fuel cell vehicles were analyzed by experiments. Results for steady and transient state performance were provided for various operating conditions. Furthermore, experiments to examine the arrangements of a radiator and an outdoor heat exchanger were carried out by changing their positions for both cooling and heating conditions. The arrangements of the radiator and the outdoor heat exchanger were tested to quantify cooling/heating effectiveness and mutual interference. The improvement of heating capacity and coefficient of performance (COP) of the CO2 heat pump system was up to 54% and 22%, respectively, when using preheated air through the radiator instead of cold ambient air. However, the cooling capacity quite decreased by 40–60% and the COP fairly decreased by 43–65%, for the new radiator-front arrangement.  相似文献   

13.
CO2 and R410A desiccant wheel (DW)-assisted separate sensible and latent cooling (SSLC) air-conditioning systems were tested under the AHRI standard. At a 50 °C regeneration temperature, the coefficient of performance (COP) of the vapor compression cycles improved only 7% from the respective baseline systems for both refrigerants. This paper proposed the idea of applying divided condensers (or gas coolers) to the R410A (or CO2) SSLC system to enhance its performance. It was found that the application of divided heat exchangers to the SSLC system provided sufficiently hot airflow for regenerating the desiccant wheel at both a reduced high side pressure (from 10.4 MPa to 9.7 MPa for CO2, from 3.46 MPa to 3.45 MPa for R410A) and a reduced discharge temperature from the condenser (gas cooler) (4 K lower for both refrigerants). The COP improvement is 36% and 61% to R410A and CO2 baseline systems, respectively.  相似文献   

14.
介绍一种带热水功能的R32热泵系统的专利技术及其实验研究与用户体验,该技术采用的制冷剂系统结构比传统的风冷热泵增加1个显热回收换热器,热水系统结构与传统的相比增加1个水路三通阀,其中热水箱含内置换热盘管,盘管内走循环加热水;能够实现单制冷、单制热供暖、制冷部分热回收、单制热水和制热同时制热水等5种运行模式;将R32排气温度高的缺点转化为优点,夏季可以得到75℃的热水,冬季可以得到85℃的热水,提高热水箱的使用效率。  相似文献   

15.
对重庆地区某办公楼的地埋管地源热泵系统进行了经济性和节能性分析,其中节能性分析是依据测试结果进行的。经济性分析结果表明:本工程采用地埋管地源热泵系统,相比空气源热泵系统,初投资静态回收期为12年;相比冷水机组+燃气锅炉,初投资静态回收期为14.1年。节能性分析结果表明:本工程采用地埋管地源热泵系统,系统制冷和制热能效比分别能达到3.6和2.9;夏季,相比于空气源热泵,系统能效提高率为20.0%,相比于冷水机组,系统能效提高率为2.9%;冬季,相比于空气源热泵,系统能效提高率为16.0%,相比于燃气锅炉,系统能效提高率为26.7%。  相似文献   

16.
A prototype transcritical CO2 heat pump was constructed for heating water to temperatures greater than 65°C while providing refrigeration at less than 2°C. The heating capacity was 115 kW at an evaporation temperature of +0.3°C and a hot water temperature of 77.5°C, with a heating coefficient of performance (COP) of 3.4. Performance data is presented for each of the compressor, the gas cooler, and the recuperator as well as for the overall heat pump system. Equipment performance data was incorporated into a computer model to enable parametric investigations of heat pump performance. Model predictions showed that the hot water temperature could be increased from 65 to 120°C with a relatively small reduction in heating capacity and heating COP of 33 and 21%, respectively. Model predictions also highlight the potential for significant capacity improvements by eliminating the recuperator in favour of a larger gas cooler.  相似文献   

17.
This paper describes the development of a CO2 air/water heat pump for the production of tap hot water in a residential building. The basic design consists of a single-stage piston compressor, a coaxial type gas cooler, an electronic expansion valve, a finned tube evaporator and a low pressure receiver. The heat pump is combined with a storage tank designed to maintain internal water stratification.The gas cooler pressure optimisation in the case of fixed water delivery temperature was theoretically analysed.A new control method for the upper cycle pressure was developed to maximise the COP of the heat pump, while the water mass flow was adjusted to maintain the set water temperature at the gas cooler exit.Before commissioning, the heat pump was factory tested to verify its energy performance and to validate the high pressure control logic.  相似文献   

18.
针对华南地区某连锁酒店客房热水供应及该酒店商场空调需求,提出了空气源热泵承压热水供应与全新风空调联供系统方案,介绍了系统具体构成及关键部件的匹配设计计算方法,利用蓄热水罐、蓄冷风柜等蓄能装置和以PLC为核心的数据采集及控制手段,探讨了冷热需求不同步、冷热负荷不均衡的冷热联供固有局限问题的一种解决方案,并对实施的工程系统进行了全年性现场运行性能测试和分析调试。结果表明:该系统在可靠地满足该酒店热水供应的同时,又满足了该酒店商场夏季全新风降温空调的需求,该系统年平均综合能效比大于4.7,为空气源热泵冷热联供提供了一种工程实例。  相似文献   

19.
Using economizer in R-744 heat pump cycle is an effective way to improve the heating capacity in cold climates. In this paper, a modification construction of reciprocating compressor with economizer port, a Voorhees compressor was introduced and the heat pump cycle with Voorhees economizer was compared with the traditional screw or scroll economizer cycles. Both the R-744 transcritical heat pumps with and without Voorhees economizer were tested at the same conditions with different air mass flow rates and different evaporating temperatures. The results show that the heating capacity of the heat pump with Voorhees economizer can be two times higher than the transcritical heat pump without economizer at low evaporating temperature conditions. At the same capacity operation conditions, the efficiency of the heat pump with Voorhees economizer is higher at high refrigerant mass flow rate conditions. The optimum discharge pressure of the heat pump with Voorhees economizer is found to be higher than the heat pump without economizer at the same ambient conditions. For mobile heat pump application, CO2 transcritical heat pump with Voorhees economizer demonstrates better performance comparing to the conventional transcritical CO2 heat pump without economizer when the evaporating temperature is lower than −20 °C, or when the mobile is idling with low compressor RPM.  相似文献   

20.
A novel silica gel–water adsorption chiller is designed and its performance is predicted in this work. This adsorption chiller includes three vacuum chambers: two adsorption/desorption (or evaporation/condensation) vacuum chambers and one heat pipe working vacuum chamber as the evaporator. One adsorber, one condenser and one evaporator are housed in the same chamber to constitute an adsorption/desorption unit. The evaporators of two adsorption/desorption units are combined together by a heat-pipe heat exchanger to make continuous refrigerating capacity. In this chiller, a vacuum valve is installed between the two adsorption/desorption vacuum chambers to increase its performance especially when the chiller is driven by a low temperature heat source. The operating reliability of the chiller rises greatly because of using fewer valves. Furthermore, the performance of the chiller is predicted. The simulated results show that the refrigerating capacity is more than 10 kW under a typical working condition with hot water temperature of 85 °C, the cooling water temperature of 31 °C and the chilled water inlet temperature of 15 °C. The COP exceeds 0.5 even under a heat source temperature of 65 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号