首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
This paper presents a project to develop an R744 commercial single door bottle cooler that is cost competitive and matches the performance of typical cost optimised R404A and R134a systems. Compressors with different displacement and efficiency values are evaluated for refrigerating systems with fin and tube and steel wire-on-tube gas coolers. Capillary tubes are tested. A methodology to properly sizing them and to optimize the combination of capillary tube and refrigerant charge is developed. The problem of optimal cycle high pressure is addressed and Liao’s approximated solution questioned. Tests demonstrate that the CO2 energy consumption systems are higher than traditional ones especially at ambient temperatures above 25 °C. Carbon dioxide appears to be a feasible option for stand-alone refrigerating equipment in terms of total equivalent warming impact (TEWI) compared to HFC refrigerants with actual single stage R744 compressor technology, only if the refrigeration units operate at medium-low gas cooler inlet temperature.  相似文献   

2.
针对大型风冷冷水机组性能评价系统能耗高的现状,分析评价系统的主要能耗构成,指出传统大型风冷冷水机组性能评价系统的高能耗成因,提出一种新型变容量全回收风冷冷水机组性能评价系统。新型评价系统省去样机恒温水箱、冷冻水箱和换热水泵,将变容量水冷乙二醇冷冻机组与经济器(冷却塔协同功能板换)串入闭式回路实现一级温控,结合变频泵与调节阀实现二级温控。实证表明:相比传统评价系统,应用双级温控的新型评价系统相近工况过渡耗时减少为前者的70%,综合能耗降为传统的75%,运行稳定性良好,节能效果显著。  相似文献   

3.
Increased interest in the environmental impact of refrigeration technology is leading toward design solutions aimed at improving the energy efficiency and use of eco-friendly refrigerants with low GWP. The aim of this paper is to theoretically analyse R744 air to water heat pump cycles for heating applications up to 80 °C. This work studies the following cycle configurations: two-stage with injection (with and without intermediated cooling between compressors) and a single-stage circuit coupled with an auxiliary circuit. Internal heat transfer among the different streams of refrigerant is included, and the cycles have been optimised with regards to COP in terms of the intermediate conditions and gas cooler pressure. Finally, these cycles have been compared and analysed among each other and with a subcritical injection cycle working with R134a and a single-stage R744 cycle. The improved cycle with R744 can represent a global improvement of 15% in terms of COP.  相似文献   

4.
This paper presented the exergoeconomic evaluation of the developed desiccant-evaporative air-conditioning system. The developed system was evaluated based on the steady-state conditions at different regeneration and reference temperatures. The exergoeconomic evaluation method was implemented to the system components and the whole system to evaluate the exergy efficiency, exergy destruction ratios, cost rates, relative cost differences and exergoeconomic factors. The regeneration and reference temperatures affected the exergy efficiencies, exergy destruction ratios, cost rates, relative cost differences and exergoeconomic factors. The desiccant wheel, heating coil and evaporative cooler had a high cost rate (investment cost, operation and maintenance cost, and exergy destruction cost). The exit air fan, outdoor air fan and evaporative cooler had a high relative cost difference. The exit air fan, outdoor air fan and secondary heat exchanger had a high exergoeconomic factor. Replacement of the desiccant wheel with a higher dehumidification performance could decrease the high cost rate. A higher efficiency evaporative cooler and heating coil were needed. Cheaper air fans (outdoor air fans and exit air fans) were needed.  相似文献   

5.
太阳能/余热固体除湿冷却系统研究   总被引:1,自引:0,他引:1  
提出并研制一种太阳能/余热驱动除湿冷却系统。系统包括2台内冷却紧凑式固体除湿器、热交换器、蒸发冷却器等部件。在不同工况下对系统的性能进行模拟计算,分析再生温度、热交换器效率及蒸发冷却器效率对系统性能的影响。  相似文献   

6.
A single-stage inline pulse tube refrigerator (PTR) with tapered slit-type heat exchangers utilized as the aftercooler and the cold end heat exchanger has been designed, fabricated and investigated. Simple energy conservation equation is applied for the design of the tapered slit-type heat exchangers with which the PTR is optimized. The air-cooled aftercoolers with different slit configurations have been compared in this paper with regard to its cooling capacity. The optimized PTRs driven by a single-piston linear compressor achieve the lowest temperature of 53.1 K and 53.5 K, and the cooling capacity of 3.0 W at 60 K and 3.5 W at 60 K, respectively. The result shows that the tapered slit-type heat exchangers can replace the mesh-type heat exchanger, but the geometric configuration of slits and the compressible volume should be carefully considered for optimum performance of the cooler.  相似文献   

7.
分析地下换热器的埋管方式、钻孔深度、U形管内流体流量及设计进水温度对地下换热器的初投资和热泵运行费用的影响,提出地下换热器单位换热量的换热成本指数的概念,并推导其具体的计算式。利用地下换热器的换热成本指数可以评估不同设计方案的经济性。最后通过计算换热成本指数评估不同设计方案的经济性。  相似文献   

8.
Thermodynamic analysis of an R744–R717 cascade refrigeration system   总被引:1,自引:1,他引:0  
A thermodynamic analysis of carbon dioxide–ammonia (R744–R717) cascade refrigeration system is presented in this paper to optimize the design and operating parameters of the system. The design and operating parameters considered in this study include (1) condensing, subcooling, evaporating and superheating temperatures in the ammonia (R717) high-temperature circuit, (2) temperature difference in the cascade heat exchanger, and (3) evaporating, superheating, condensing and subcooling in the carbon dioxide (R744) low-temperature circuit. A multilinear regression analysis was employed in terms of subcooling, superheating, evaporating, condensing, and cascade heat exchanger temperature difference in order to develop mathematical expressions for maximum COP, an optimum evaporating temperature of R717 and an optimum mass flow ratio of R717 to that of R744 in the cascade system.  相似文献   

9.
This article contains the steady and quasi-steady state analysis on a CO2 hybrid ground-coupled heat pumping system for warm climates. The hybrid system uses a combination of ambient air and ground boreholes as a heat sink for the cooling mode, while only the ground boreholes are used as a heat source in the heating mode. The steady state analysis suggests that the optimal control strategy of gas cooler pressure for a CO2 hybrid transcritical cycle is based on the optimal cooling COP value and the ratio of heat rejected to ambient air. This optimal control strategy is important for decreasing the annual ground thermal imbalance performance of ground boreholes. In addition, the quasi-steady state model of a CO2 hybrid ground-coupled heat pumping system is constructed for the hourly simulation with different boundary conditions. Simulation results show the details of the system operating characteristics both for heating and cooling modes and the COP values with different operating and design conditions are presented.  相似文献   

10.
Solar desiccant-based air-conditioning has the potential to significantly reduce cost and/or greenhouse gas emissions associated with cooling of buildings. Parasitic energy consumption for the operation of supply fans has been identified as a major hindrance to achieving these savings. The cooling performance is governed by the trade-off between supplying larger flow-rates of cool air or lower flow-rates of cold air. The performance of a combined solid desiccant-indirect evaporative cooler system is analysed by solving the heat and mass transfer equations for both components simultaneously. Focus is placed on varying the desiccant wheel supply/regeneration and indirect cooler secondary/primary air-flow ratios. Results show that for an ambient reference condition, and 70 °C regeneration temperature, a supply/regeneration flow ratio of 0.67 and an indirect cooler secondary/primary flow ratio of 0.3 gives the best performance with COPe > 20. The proposed cooling system thus has potential to achieve substantial energy and greenhouse gas emission savings.  相似文献   

11.
A novel CO2 heat pump system was provided for use in fuel cell vehicles, when considering the heat exchanger arrangements. This cycle which had an inverter-controlled, electricity-driven compressor was applied to the automotive heat pump system for both cooling and heating. The cooling and heating loops consisted of a semi-hermetic compressor, supercritical pressure microchannel heat exchangers (a gas cooler and a cabin heater), a microchannel evaporator, an internal heat exchanger, an expansion valve and an accumulator. The performance characteristics of the CO2 heat pump system for fuel cell vehicles were analyzed by experiments. Results for steady and transient state performance were provided for various operating conditions. Furthermore, experiments to examine the arrangements of a radiator and an outdoor heat exchanger were carried out by changing their positions for both cooling and heating conditions. The arrangements of the radiator and the outdoor heat exchanger were tested to quantify cooling/heating effectiveness and mutual interference. The improvement of heating capacity and coefficient of performance (COP) of the CO2 heat pump system was up to 54% and 22%, respectively, when using preheated air through the radiator instead of cold ambient air. However, the cooling capacity quite decreased by 40–60% and the COP fairly decreased by 43–65%, for the new radiator-front arrangement.  相似文献   

12.
对于土壤排取热量不均衡地区,地源热泵应用过程中常会出现土壤热失衡问题,该问题严重制衡了地源热泵系统在该地区长期高效稳定运行。针对此类地区土壤排取热量严重失衡的特点,同时基于土壤排取热量平衡的理念,提出太阳能对土壤进行全年补热的地源热泵—太阳能耦合系统,并通过一个典型工程案例对地源热泵—太阳能耦合系统的设计思路、技术方案、运行策略、经济性能等方面进行了分析与研究。结果表明,相比于常规能源系统,本项目地源热泵—太阳能耦合系统每年可节能308万kWh,节约运行费用47.64万元,节能率达72.13%,节能减排及环境、社会效益非常显著,以期为土壤排取热量不均衡地区地源热泵系统的相关研究及其工程应用提供参考。  相似文献   

13.
A steady state simulation model has been developed to evaluate the system performance of a transcritical carbon dioxide heat pump for simultaneous heating and cooling. The simulated results are found to be in reasonable agreement with experimental results reported in the literature. Such a system is suitable, for example, in dairy plants where simultaneous cooling at 4 °C and heating at 73 °C are required. The optimal COP was found to be a function of the compressor speed, the coolant inlet temperature to the evaporator and inlet temperature of the fluid to be heated in the gas cooler and compressor discharge pressure. An optimizing study for the best allocation of the fixed total heat exchanger inventory between the evaporator and the gas cooler based on the heat exchanger area has been carried out. Effect of heat transfer in the heat exchangers on system performance has been presented as well. Finally, a novel nomogram has been developed and it is expected to offer useful guidelines for system design and its optimisation.  相似文献   

14.
CO2是具有很大潜力的天然替代工质之一,CO2跨临界循环放热过程中具有较大温度滑移,与水侧温升过程相匹配,因此适合用于热泵热水器系统。国内外学者提出了许多提高跨临界CO2循环效率的方法,其中包括引入回热器、喷射器等设备,从不同角度对比分析在常规跨临界CO2热泵系统中引入回热器、喷射器后系统的性能变化。本文在前人工作的基础上,建立相关热力学计算模型,并进一步对四种不同形式的跨临界CO2热泵系统(常规跨临界CO2热泵系统(TCHS)、带回热器的跨临界CO2热泵系统(TCHSI)、带喷射器的跨临界CO2热泵系统(TCHSE)及带喷射器与回热器的跨临界CO2热泵系统(TCHSEI))的性能进行研究,对比分析排气压力一定的情况下四种循环的热力性能;从最优排气压力的角度出发,分析对比不同系统中气冷器出口温度变化对系统最优排气压力和制热系数的影响,以及喷射器等熵效率对系统性能的影响。以上研究为CO2压缩式热泵系统的实用化进展奠定良好的理论基础。  相似文献   

15.
Improving the performance of the pulse tube cooler is one of the important objectives of the current studies. Besides the phase shifters and regenerators, heat exchangers also play an important role in determining the system efficiency and cooling capacity. A series of experiments on a 10 W @ 77 K class co-axial type pulse tube cooler with different cold heat exchanger geometries are presented in this paper. The cold heat exchangers are made from a copper block with radial slots, cut through using electrical discharge machining. Different slot widths varying from 0.12 mm to 0.4 mm and different slot numbers varying from around 20–60 are investigated, while the length of cold heat exchangers are kept the same. The cold heat exchanger geometry is classified into three groups, namely, constant heat transfer area, constant porosity and constant slot width. The study reveals that a large channel width of 0.4 mm (about ten times the thermal penetration depth of helium gas at 77 K, 100 Hz and 3.5 MPa) shows poor performance, the other results show complicated interaction effects between slot width and slot number. These systematic comparison experiments provide a useful reference for selecting a cold heat exchanger geometry in a practical cooler.  相似文献   

16.
基于换热器中的传热窄点温差的限制,对R744/R600及R744/R600a在所研究的工况范围内分别替代传统制冷剂R22的亚临界热泵循环特性分别进行了计算分析.结果表明:R744/R600和R744/R600a具有不同的最优配比,可以使得制热性能系数(COPh)最大;R744/R600及R744/R600a在最优配比下的COPh分别比R22系统增大11.98%和8.24%,分别比纯质R600和R600a大36.43%和36.24%,比跨临界循环R744系统增加7.07%和4.71%.在最优配比下,R744/R600和R744/R600a的冷凝压力低于R22,分别为0.84MPa和1.18MPa;压缩机排气温度也低于R22,在90℃以下.  相似文献   

17.
基于一台R410A商用空调对平行流换热器和铜管-铝翅片换热器的性能、可靠性进行试验研究和对比分析。结果表明,平行流换热器能够有效提高空调的制冷性能并降低材料成本,平行流换热器经过1 200h中性盐雾试验后出现表面发黑现象,氦检未发生泄漏。平行流换热器的爆破压力一般在15.5~17.5MPa之间,可应用于R410A等高压工质的空调系统。  相似文献   

18.
小型风冷热泵制冷剂最佳充注量实验研究   总被引:3,自引:0,他引:3  
以R22为工质,通过对风冷热泵冷热水机组制冷剂充注量的实验研究,分析充注量对机组系统性能的影响及原因,提出机组性能改进措施及方法,实现风冷热泵节能优化.  相似文献   

19.
空气与土壤复合源热泵系统通过空气换热器实现了间接空气源热泵模式与补热模式,可补偿取、放热量的差值,解决土壤源热泵系统在我国北方地区长期运行产生的土壤热不平衡问题.为能够在保障供暖效果的前提下最大限度地降低地埋管数量,本文以我国5个北方城市的住宅为例,在TRNSYS平台上建立了空气与土壤复合源热泵系统的仿真模型,对地埋管...  相似文献   

20.
介绍一种带热水功能的R32热泵系统的专利技术及其实验研究与用户体验,该技术采用的制冷剂系统结构比传统的风冷热泵增加1个显热回收换热器,热水系统结构与传统的相比增加1个水路三通阀,其中热水箱含内置换热盘管,盘管内走循环加热水;能够实现单制冷、单制热供暖、制冷部分热回收、单制热水和制热同时制热水等5种运行模式;将R32排气温度高的缺点转化为优点,夏季可以得到75℃的热水,冬季可以得到85℃的热水,提高热水箱的使用效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号