首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The abrasive is one of the important influencing factors during the chemical mechanical polishing (CMP) process. Although α-alumina is one of the most commonly used sapphire polishing abrasives due to its high hardness, it often results in surface damage. To receive lower surface roughness and high material removal rate, a common approach is to modify the surface of alumina. In this work, a series of alumina/metatitanic acid composite abrasives with core–shell structure were synthesized. The CMP performances of the pure alumina and alumina/metatitanic acid core–shell abrasives on sapphire substrates were investigated after polishing under the same conditions. Experimental results indicate that the alumina/metatitanic acid core–shell abrasives can not only improve the surface quality, but also further enhance the material removal rate. Furthermore, through the X-ray photoelectron spectroscopy test, this study investigated the chemical effect mechanism of the alumina/metatitanic acid core–shell abrasives in sapphire CMP. The results show that solid-state chemical reactions occur between metatitanic acid shell and sapphire surface during CMP process. We also investigated the mechanical friction mechanism through abrasive wear and adhesive wear.  相似文献   

2.
The study mainly explores the fabrication mechanism for fabricating sapphire wafer substrate, by using chemical mechanical polishing (CMP) method. A slurry containing the abrasive particles of SiO2 is used to contact with the sapphire substrate polish and to produce chemical reaction for removal of sapphire wafer substrate when CMP method is used. The study observes the changes of the removal amount of sapphire wafer substrate when the pattern-free polishing pad and hole-pattern polishing pad are used under different down forces, polishing velocities, abrasive particle sizes and slurry concentrations. Employing regression analysis theory, the study makes improvement of the equation of material removal rate (MRR) to be the material removal height per 30 minutes (MRRh), and develops a compensation parameter Crv of the error caused by the volume concentration of slurry. The results of experimental analysis show that under a certain down force, if the polishing velocity is greater, the material removal amount will be greater. Generally speaking, the material removal amount of hole-pattern polishing pad is greater than that of pattern-free polishing pad. As to the relationship between abrasive particle size and slurry concentration, when particle size is smaller, the volume concentration of slurry will be higher, and the number of abrasives for polishing wafer will be greater. As a result, a better material removal depth can be acquired. Through the above analytical results, considerable help is offered to the polishing of sapphire wafer.  相似文献   

3.
Cd0.96Zn0.04Te (111) wafers were precisely ground by #800, #1500, #3000, and #5000 diamond grinding wheel. For comparison, Cd0.96Zn0.04Te (110) wafers were machined by lapping, mechanical polishing, and chemical mechanical polishing. High-resolution environmental scanning electron microscopy equipped with energy dispersive spectroscopy and optical interference surface profiler both were employed to investigate the surface quality and material removal mechanism. The results show that the material removal mechanism of #800 grinding wheel is abrasive wear, fatigue wear, and adhesive wear, and that of #1500 is abrasive wear and fatigue wear. Both the material removal mechanism of #3000 and #5000 grinding wheel are abrasive wear, leading to the excellent ductile removal precision grinding. While the material removal mechanism of CMP on CdZnTe wafers is firstly chemical resolving reaction and secondly mechanical carrying action. Moreover, precision grinding exhibits high-efficiency character and eliminates the imbedding of free abrasives of Al2O3 and SiO2.  相似文献   

4.
蓝宝石基片的磁流变化学抛光试验研究   总被引:5,自引:1,他引:5  
分析了磁流变化学抛光的加工机理,对蓝宝石基片的磁流变化学抛光进行了试验研究。结果表明:磁流变化学抛光可将蓝宝石基片加工到亚纳米级粗糙度的超光滑镜面,材料去除率受化学反应速率和剪切去除作用共同影响,化学反应速率越快,剪切去除作用越强,材料去除率越高;混有硅胶溶液与α-Al2O3磨料的磁流变化学抛光液去除率最高;材料去除率随工作间隙,励磁间隙以及加工时间的增大而减少,随铁粉浓度减少而减少;利用磁流变化学抛光方法加工蓝宝石基片可获得Ra 0.3 nm的超光滑表面。  相似文献   

5.
通过分析软质层的形成、作用以及纳米磨料的自身变形对材料去除的影响,改进了CMP过程的接触力学模型;分析了纳米磨料自身变形量对磨料嵌入硅晶片基体材料的深度的影响,以及纳米磨料硬度对抛光表面粗糙度的影响。结果表明:软质层的存在增加了单个纳米磨料所去除材料的体积,且对基体材料有保护作用,减小了纳米磨料嵌入基体材料的深度;纳米磨料的自身变形抵消了纳米磨料嵌入基体材料的切削深度,从而也决定了抛光表面的粗糙度;纳米磨料的自身变形量与纳米磨料的硬度有关,硬度低的纳米磨料自身变形量大,因而切削深度小,抛光后表面的粗糙度值低。  相似文献   

6.
Chemical mechanical polishing (CMP) is a common method for realising the global planarisation and polishing of single-crystal SiC and other semiconductor substrates. The strong oxidant hydroxyl radicals (·OH) generated by the Fenton reaction can effectively oxidise and corrode the SiC substrate, and are thus used to improve the material removal rate (MRR) and surface roughness (Ra) after polishing of SiC during CMP. Therefore, it is necessary to study the material removal mechanism in detail. Based on the modified Preston equation, the effects of the CMP process parameters on the MRR and Ra after polishing of SiC and their relationship were studied, and a prediction model of the CMP process parameters, MRR, and Ra after polishing was also established based on a back-propagation neural network. The MRR initially increased and then decreased, and the Ra after polishing initially decreased and then increased, with increasing FeSO4 concentration, H2O2 concentration, and pH value. The MRR continuously increased with increasing abrasive particle size, abrasive concentration, polishing pressure, and polishing speed. However, the Ra continuously decreased with increasing abrasive particle size and abrasive concentration, increased with increasing polishing pressure, and initially decreased and then increased with increasing polishing speed. The established prediction model could accurately predict the relationship between the process parameters, MRR and Ra after polishing in CMP (relative prediction error of less than 10%), which could provide a theoretical basis for CMP of SiC.  相似文献   

7.
LED蓝宝石衬底的表面质量会极大影响到后续外延质量,进而影响到LED器件性能。蓝宝石研磨片经Al2O3磨粒粗抛液、SiO2磨粒精抛液下进行化学机械抛光(CMP),最终表面经原子力显微镜(AFM)所测表面粗糙度达到0.101nm,获得亚纳米级粗糙度超光滑表面,并呈现出原子台阶形貌。同时,通过使用Zygo表面形貌仪、AFM观察蓝宝石从研磨片经Al2O3粗抛液、SiO2精抛液抛光后的表面变化,阐述蓝宝石表面原子台阶形貌的形成原因,提出蓝宝石原子级超光滑表面形成的CMP去除机理。通过控制蓝宝石抛光中的工艺条件,获得a-a型、a-b型两种不同周期规律性的台阶形貌表面,并探讨不同周期规律性台阶形貌的形成机理。  相似文献   

8.
氧化铝复合磨粒的抛光特性研究   总被引:2,自引:1,他引:1  
为提高氧化铝磨料分散稳定性,利用接枝聚合对氧化铝粒子进行了表面改性,并研究了改性后氧化铝粒子在数字光盘玻璃基片中的化学机械抛光特性。结果表明,氧化铝复合磨粒的抛光性能与其表面接枝率密切相关。接枝率上升,材料去除速率下降;试验条件下,当接枝率为2.93%时,氧化铝磨粒体现出较高的表面平整性、较低的表面粗糙度及较低的表面损伤。  相似文献   

9.
Chemo-mechanical-grinding (CMG) is a hybrid process which integrates chemical reaction and mechanical grinding between abrasives and workpiece into one process. It has been successfully applied into manufacturing process of silicon wafers where both geometric accuracy and surface quality are required. This paper aims to study the potential of CMG process in manufacturing process of single crystal sapphire wafers. The basic material removal mechanism in terms of chemical effect and mechanical effect in CMG process has been analysed based on experiment results of two different kinds of CMG wheels. The experiment results suggest that chromium oxide (Cr2O3) performs better than silica (SiO2) in both material removal rate (MRR) and surface quality. It also reveals that, no matter under dry condition or wet condition, CMG is with potential to achieve excellent surface quality and impressive geometric accuracy of sapphire wafer. Meanwhile, test result by Raman spectrum shows that, by using Cr2O3 as abrasive, the sub-surface damage of sapphire wafer is hardly to be detected. Transmission electron microscopy (TEM) tells that the sub-surface damage, about less than 50 nm, might remain on the top surface if chemical effect is not sufficient enough to meet the balance with mechanical effect in CMG process.  相似文献   

10.
超细氧化铝表面改性及其抛光特性   总被引:6,自引:2,他引:4  
卢海参  雷红  张泽芳  肖保其 《润滑与密封》2007,32(2):102-104,107
在化学机械抛光(CMP)中,为了提高氧化铝磨料分散稳定性和防止团聚,利用丙烯酰氯对超细氧化铝进行了表面改性,并用XPS、激光粒度仪、SEM对其进行表征,结果表明改性后的超细氧化铝分散性明显提高。研究了改性后超细氧化铝在数字光盘玻璃基片中的化学机械抛光特性,即外加压力、抛光时间和下盘转速对玻璃基片去除量的影响,并对其CMP机制进行了推断。结果表明,材料去除量随下盘转速、压力变化趋势相近,即随着压力的增加或下盘转速的提高,材料去除量先增大后减小;随抛光时间延长,抛光初期材料去除量增加较快,但在后段时间内去除量增加趋势趋于平缓。  相似文献   

11.
Hard-inert materials such as diamond, silicon carbide, gallium nitride, and sapphire are difficult to obtain from the smooth and damage-free surfaces efficiently required by semiconductor field. Therefore, this study proposed a chemical kinetics model to evaluate the material removal rate of diamond in chemical mechanical polishing process and to investigate the material removal mechanism by examining the surface information with optical microscopy, surface profilometry, and atomic force microscopy as well as X-ray photoelectron spectroscopy. The theoretical and experimental results show that chemical and mechanical synergic effect may promote the diamond oxidation reaction in chemical kinetics. The material removal rate is acceptable when the mechanical activation coefficient is smaller than 0.48. The 2.5 μm B4C abrasives, the polishing temperature of 50 °C, and the polishing pressure of 266.7 MPa are optimal parameters for diamond polishing with potassium ferrate slurry. It provides the highest material removal rate of 0.055 mg/h, the best surface finish (about Ra 0.5 nm) and surface quality (no surface scratches or pits). It then discusses how mechanical stress may promote the chemical oxidation of oxidant and diamond by forming “C-O,” “C=O,” and “O=C-OH” on diamond surface. The study concludes that chemical kinetics mechanism is effective for the investigation of the synergic effect in chemical mechanical polishing hard-inert materials.  相似文献   

12.
无抛光垫化学机械抛光技术研究   总被引:2,自引:0,他引:2  
应用双电层理论分析了SiO2磨粒与聚苯乙烯粒子在溶液中的ζ电位及粒子间的相互作用机制,观察到SiO2磨粒吸附在聚苯乙烯粒子表面的现象.分析了基于复合粒子抛光液的无抛光垫化学机械抛光技术特点及其材料去除机理.比较试验表明,基于复合粒子抛光液的硅片无抛光垫化学机械抛光具有与传统化学机械抛光相接近的材料去除率和硅片表面粗糙度值,并可避免工件塌边现象的产生.  相似文献   

13.
The new bonding technologies utilizing intermolecular bonding forces have been developed and attracting attention recently. Cu is known to be a suitable material for the bonding substrate due to its excellent physical properties. And an ultra flatness and an ultra smoothness over a relatively large area are strongly required for the Cu substrate surface.Chemical–mechanical planarization/polishing (CMP) with abrasives is widely adopted for planarizing and smoothing Cu surfaces. But this method has serious problems resulting from abrasives in CMP slurry. Hence, we have developed an abrasive-free polishing (AFP) method that utilizes vacuum ultraviolet (VUV) light in the previous study and an ultra-smooth Cu surface was achieved. However, the problems about a low removal rate and a small finished area remained.To overcome the problem, a new manufacturing process, namely, the process of combining CMP with abrasives and the AFP method was newly developed. First, an ultra-flat surface is achieved using CMP with abrasives. Next, the AFP method is applied for the final polishing step in order to achieve an ultra-smooth surface. As a result, utilizing VUV in situ irradiation and electrolyzed reduced water in the AFP process, the ultra-flat and the ultra-smooth surface produced has a roughness average of <1 nm with a peak value of <10 nm over a relatively large area of 700 μm × 500 μm.  相似文献   

14.
In this work, we further developed the photochemically combined mechanical polishing (PCMP) method for finishing N-type gallium nitride (GaN) wafers. A core improvement is to design a novel polishing tool with phyllotactic distributed through-holes, through which the wafer surface underneath through-holes can receive ultraviolet (UV)-light for the photochemical oxidation, while the rest parts undergo mechanical polishing. During PCMP, the co-rotation of the wafer and polishing tool allows the wafer surface to undergo the uniform and high-frequency conversion of oxidation and polishing. Based on the designed PCMP system and apparatus, the fundamental issues arising from such an alternate processing mode, which is different from the parallel mode of conventional chemical mechanical polishing (CMP), were investigated. Results show that the technical features of PCMP depend on the nature of the photochemical oxidation of wafers themselves if the mechanical polishing procedure can sufficiently remove oxides in time. The material removal rate (MRR) is inversely proportional to the dislocation density of wafers. Under acidic conditions, the oxidation proceeds by the GaN monocrystal step orientation, allowing PCMP to clear surface/subsurface damages (SSDs) and to prepare step-terrace structures on the wafer surface. When the polishing solution (pH = 1.5) includes 0.1 M K2S2O8 oxidants and 10 wt% SiO2 abrasives, the surface roughness Sa attains 0.21 nm in 10 × 10 μm2, and the MRR reaches 275.3 nm/h. The present study shows that the phyllotactic distributed through-hole array structure designed for polishing tools offers rich possibilities for the innovation of polishing technologies combining with various oxidation approaches.  相似文献   

15.
Self-conditioning performance of polishing pad is an important characteristic to influence processing efficiency and service life in chemical mechanical polishing (CMP). The slurry can react with the pad surface, which affects its self-conditioning performance in fixed abrasive polishing process. Wear ratio of wafer material removal rate (MRR) and pad wear rate is introduced to evaluate self-conditioning performance of fixed abrasive pad (FAP). To clear the effect of chemical additive on FAP self-conditioning, wear ratio, FAP surface topography, friction coefficient, and acoustic emission signal of polishing process were investigated in fixed abrasive polishing of quartz glass with ferric nitrate, ethylenediamine (EDA), and triethanolamine (TEA) slurry, respectively. Results indicate that TEA slurry can provide excellent self-conditioning of FAP in fixed abrasive polishing of quartz glass. MRR and wear ratio maintain high levels during the whole polishing process. Friction coefficient and acoustic emission signal are more stable than that of the other two chemical additives. An appropriate amount of TEA, which is beneficial to enhance MRR and extends service life of FAP, is added in the polishing slurry to improve FAP self-conditioning in fixed abrasive polishing process.  相似文献   

16.
Chemical mechanical polishing (CMP) is a semiconductor fabrication process. In this process, wafer surfaces are smoothed and planarized using a hybrid removal mechanism, which consists of a chemical reaction and mechanical removal. In this study, the effects of wafer size on the material removal rate (MRR) and its uniformity in the CMP process were investigated using experiments and a mathematical model proposed in our previous research; this model was used to understand the MRR and its uniformity with respect to wafer size. Under constant process conditions, the MRR of a silicon dioxide (SiO2) film increased slightly along with an increase in wafer size. The increase in MRR may be attributed to the acceleration of the chemical reaction due to a rise in process temperature. Based on the results obtained, the k and α values in the mathematical model are useful parameters for understanding the effect of wafer size on the MRR and its distribution under a uniform, relative velocity. These parameters can facilitate the prediction of CMP results and the effective design of a CMP machine.  相似文献   

17.
This paper presents a novel method of improving material removal efficiency in the chemical mechanical polishing (CMP) process by optimizing the surface asperity orientation with respect to polishing motion. Feret's diameter plays a key role in increasing the number of working abrasives. Based on Feret's diameter model, an optimization method is proposed for the conditioning motion of a diamond dresser against a CMP pad. The radial velocity component of the dresser on the CMP pad is maximized by considering its direction of motion based on kinematic motion simulation. In addition, the pad cut rate profile is optimized to be uniform. Analytical and experimental investigations show that the ratio of radial and tangential velocity components is improved, yielding a larger Feret's diameter and 15% increase in the material removal rate.  相似文献   

18.
Research on chemo-mechanical grinding of large size quartz glass substrate   总被引:1,自引:0,他引:1  
Finishing process of quartz glass substrate is meeting great challenges to fulfill the requirements of photomask for photolithography applications. For the final finishing of the substrate surface, chemical mechanical polishing (CMP) is often utilized. Those free abrasive processes are able to offer a great surface roughness, but sacrifice profile accuracy. On the other hand, the fixed abrasive process or grinding is known as a promising solution to improve accuracy of profile geometry, but always introduces damaged layer. Chemo-mechanical grinding (CMG) is potentially emerging defect-free machining process which combines the advantages of fixed abrasive machining and CMP. In order to simultaneously achieve high surface quality and high profile accuracy, CMG process has been applied into machining of large size quartz glass substrates for photomask use. Reported in this paper are CMG performances in finishing of quartz glass substrates including material removal rate (MRR), surface roughness, flatness and optical characteristics.  相似文献   

19.
Slurry is widely used in polishing difficult-to-machine materials. However, it is accompanied with some issues, such as the agglomeration of abrasives and high disposal cost. Although using fixed abrasive grains instead of slurry can solve these issues, the problems of wear and of loading fixed abrasive grinding stones, which result in decrease of material removal rate (MRR), also need to be solved. Many researches have been conducted on the self-sharpening of fixed abrasive grinding stones. However, the self-sharpening of grinding stones is not efficient with ultra-low polishing pressure, which is not large enough to break bonds so as to expose new abrasives. In this study, a novel dress-free dry polishing process was proposed, where it combines plasma-assisted polishing and plasma-assisted dressing using Ar-based CF4 plasma and a vitrified-bonded grinding stone. Polishing experiments were conducted on sintered AlN wafer. Also, as the main component of vitrified bond materials, silica was etched using CF4 plasma, which is equivalent to the continuous dressing of grinding stone surfaces. Since new abrasives could be constantly exposed, a high MRR was maintained. Thus, a dress-free high integrity polishing process was realized. Moreover, the CF4 plasma irradiation increased the MRR twice, as CF4 plasma can not only dress a grinding stone in real time but can also modify AlN to AlF3, which can easily be removed.  相似文献   

20.
利用复合磨粒抛光液的硅片化学机械抛光   总被引:1,自引:0,他引:1  
为了提高硅片的抛光速率,利用复合磨粒抛光液对硅片进行化学机械抛光.分析了SiO2磨粒与聚苯乙烯粒子在溶液中的ζ电位及粒子间的相互作用机制,观察到SiO2磨粒吸附在聚苯乙烯及某种氨基树脂粒子表面的现象.通过向单一磨粒抛光液中加入聚合物粒子的方法获得了复合磨粒抛光液.对硅片传统化学机械抛光与利用复合磨粒抛光液的化学机械抛光进行了抛光性能研究,提出了利用复合磨粒抛光液的化学机械抛光技术的材料去除机理,并分析了抛光工艺参数对抛光速率的影响.实验结果显示,利用单一SiO2磨料抛光液对硅片进行抛光的抛光速率为180 nm/min;利用SiO2磨料与聚苯乙烯粒子或某氨基树脂粒子形成的复合磨粒抛光液对硅片进行抛光的抛光速率分别为273 nm/min和324 nm/min.结果表明,利用复合磨粒抛光液对硅片进行抛光提高了抛光速率,并可获得Ra为0.2 nm的光滑表面.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号