共查询到20条相似文献,搜索用时 0 毫秒
1.
通过分析垃圾邮件的群发特征,结合危险理论的思想,提出了运用树突状细胞算法( DCA)检测垃圾邮件群发现象的方法。该方法从垃圾邮件群发的行为特征入手,对一段时间内垃圾邮件的群发特征进行分析,根据正常和垃圾邮件在群发特征表现上的差异,判断是否为垃圾邮件群发。实验结果表明:该方法能够有效、快速地检测出垃圾邮件群发现象,具有较高的检测率。 相似文献
2.
Edelman等人根据其神经元群选择学说(the Theory of Neuronal Group Selection,TNGS)提出了脑感知学习的模型,将该模型中脑对陌生事物的学习类比于垃圾邮件过滤系统中对未知邮件的学习,提出了一种新的基于感知学习的网络垃圾邮件过滤算法,并将其应用于一种基于合作式网络的垃圾邮件过滤系统模型中。系统使用改进的文本数字签名技术得到邮件文本之间的内容相似度矩阵,将其与邮件到达的行为特征等一起作为该算法的参数,最后给出了仿真实验结果。 相似文献
3.
提出了一种基于K近邻(KNN)原理的快速文本分类算法。该算法不仅具有原始K近邻算法分类效果好的优点,还通过对训练样本进行压缩,消除相似度之间的比较,提高了分类效率。实验表明,该算法用于邮件过滤系统时,分类效果要优于基于朴素贝叶斯分类器的二项独立模型和多项式模型,而分类的时间复杂度与其相当,完全可以应用于实时邮件过滤。 相似文献
4.
基于有监督Bayesian网络的垃圾邮件过滤 总被引:6,自引:0,他引:6
对影响邮件特性的邮件报文格式作了仔细的分析并对垃圾邮件的特征进行了分类归纳,在此基础上构建了一个有监督的Bayesian邮件分类网络。通过对该网络作Bayesian参数估计,实现了判定邮件类别的不确定推理。对不同邮件测试集的在线学习试验结果表明,有监督Bayesian邮件分类网络能够有效地实现垃圾邮件的相对完备特征学习,改善邮件过滤的准确率。 相似文献
5.
基于内容的垃圾邮件过滤问题是Internet安全技术研究的一个重点问题,而基于贝叶斯的分类方法在垃圾邮件处理上表现出了很高的准确度,因此受到了广泛的关注。在朴素贝叶斯算法的基础上,提出了一种基于最小风险贝叶斯方法同Boosting算法相结合的邮件过滤改进算法,提高了分类的精确度。实验证明,算法在邮件过滤中有更好的表现。 相似文献
6.
7.
针对垃圾邮件在线过滤的实际应用,在委员会投票算法采样学习的基础上,提出动态提升采样门槛,在无标签样本池中阶梯式获取高信息量训练样本的方法。该方法能够在稳定识别精度的前提下,进一步降低用于标注和学习的样本数量,压缩由此带来的时间成本。通过在UCI的Spambase数据集上仿真,证明了该方法在改善学习效率方面的有效性。 相似文献
8.
Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system, providing the initial detection of pathogenic invaders. Research into this family of cells has revealed that they perform information fusion which directs immune responses. We have derived a dendritic cell algorithm based on the functionality of these cells, by modelling the biological signals and differentiation pathways to build a control mechanism for an artificial immune system. We present algorithmic details in addition to experimental results, when the algorithm was applied to anomaly detection for the detection of port scans. The results show the dendritic cell algorithm is successful at detecting port scans. 相似文献
9.
10.
目前的图像垃圾邮件过滤技术,大都采用国际上通用的垃圾图像数据集作为训练集,与中国国内图像垃圾邮件的图像特点不一致,图像数据缺乏实时更新,且分类器单一,过滤效果难以保证。针对该问题,在建立国内垃圾邮件图像数据库的基础上,首先提取图像的颜色、纹理和形状特征,再经K-NN分类算法优选出HSV颜色直方图特征对不同分类器进行训练、测试和性能比较,提出将基于粗糙集的K-NN算法、Naive Bayes算法和SVM算法构成的3种基分类器相结合,并基于串行迭代提升的方法形成集成学习的强分类器。该方法可以实现对国内图像垃圾邮件的有效过滤,使图像垃圾邮件过滤的准确率和召回率同时得到提升,分别为97.3%和96.1%,误判率降低到了2.7%。 相似文献
11.
针对目前协同过滤推荐算法推荐精度和用户数据在算法中匹配度都不高的问题,提出一种多属性的条件受限波尔兹曼机协同过滤推荐模型(MA-CRBM)。该模型基于实值状态的条件玻尔兹曼机,融合了用户职业和性别属性,充分利用数据集中潜在的评分与未评分信息。在训练过程中,采用动态迭代采样算法对原采样算法进行了改进,克服了训练后期数据采样误差波动太大导致精确度不高的问题。在MovieLens 数据集上的实验结果表明,MA-CRBM模型具有较好的推荐效果,可以有效提升推荐模型的精度和效率。 相似文献
12.
13.
协同过滤算法中存在着数据稀疏性和可扩展性问题,由于用户和项目数据量巨大致使数据十分稀疏,且不同数据集中数据存在差异,致使现有算法中的相似度计算不够准确和用户聚类效果不佳,对推荐算法准确率产生了显著影响。为了提高相似度计算和最近邻居搜索的准确率,提出了一种基于相似度优化和流形学习的协同过滤算法。通过加权因子优化相似度计算,结合流形学习对稀疏的用户评分数降维后进行谱聚类,通过获得的全局最优解提高聚类所得目标用户最近邻居的准确率,进而提高协同过滤推荐精度。在Epinions数据集和MovieLens数据集上进行实验,结果表明,提出的算法可以有效降低协同过滤算法的平均绝对误差和均方根误差,提高召回率,拥有更高的推荐准确率。 相似文献
14.
利用知识图谱进行推荐的一个巨大挑战在于如何获取项目的结构化知识并对其进行语义特征提取.针对这一问题,提出了一种基于知识图嵌入的协同过滤推荐算法(KGECF).首先从Freebase知识图谱中提取与项目相关的知识信息,并与历史交互项目进行链接构建子知识库;然后通过基于TransR的Xavier-TransR方法得到子知识库中实体、关系表征;设计一种端到端的联合学习模型,将结构化信息与历史偏好信息嵌入到统一的向量空间中;最后利用协同过滤方法进一步计算这些向量并生成精确的推荐列表.在MovieLens-1 M和Amazon-book两个公开数据集上的实验表明,该算法在推荐准确率、召回率、F1值和NDCG四个指标上均优于基线方法,能够集成大规模的结构化和非结构化数据,同时获得高精度的推荐结果. 相似文献
15.
针对快速鲁棒特性(SURF)算法实时性、鲁棒性等无法满足实际应用需求的问题,提出了一种对SURF的改进算法,实现图像快速拼接。改进的算法采用机器学习的方法,建立一个二进制分类器,识别出SURF提取的特征点中的关键特征点,并剔除非关键特征点。此外,采用Relief-F算法将改进的SURF描述子降维简化来完成图像配准。图像融合阶段采用带阈值的加权融合算法,实现了图像无缝拼接。实验结果表明,改进的算法具有较强的实时性和鲁棒性,并且提高了图像配准的效率,加快了图像拼接的速度。 相似文献
16.
基于设计科学的视角,利用回复率规则,提出了度量短信重要性的SmsRank算法,并将该方法引入到垃圾短信的过滤算法中。通过实验,使用R语言验证了该算法在过滤垃圾短信的有效性,并且与SVM算法的分类结果做对比,结果表明其精准率明显优于SVM算法。最后,利用该算法提出了基于短信服务中心的应用模式。 相似文献
17.
树突状细胞算法(DCA)在应用于入侵检测时,需要对网络监测数据进行约简,以降低系统负担,提高检测效率。提出一种结合粗糙集属性约简和DCA的异常入侵检测方法。采用粗糙集属性重要度对数据集进行属性约简,产生DCA输入信号,而后利用DCA算法进行入侵检测。通过KDD CUP99数据集对所提出的改进算法进行验证,结果表明,算法在保证检测率的前提下,显著降低了误报率。算法实现了入侵检测特征的自动提取,显著减少了所需检测的特征数目,加快了算法运行速度,具有良好的综合性能。 相似文献
18.
基于项目的协同过滤从用户的历史交互项目中学习用户偏好,根据用户的偏好推荐相似的新项目。现有的协同过滤方法认为用户所交互的一组历史项目对用户的影响是相同的,并且将所有历史交互项目在对目标项目作预测时的贡献看作是相同的,导致这些推荐方法的准确性受限。针对上述问题,提出了一种基于双重最相关注意力网络的协同过滤推荐算法,该算法包含两层注意力网络。首先,使用项目级注意力网络为不同历史项目分配不同的权重来捕获用户历史交互项目中最相关的项目;然后,使用项目交互级注意力网络感知不同历史项目与目标项目之间的交互关联度;最后,通过两层注意力网络的使用来同时捕获用户在历史交互项目上和目标项目上的细粒度偏好,从而更好地进行下一步推荐工作。在MovieLens和Pinterest两个真实数据集上进行实验,实验结果表明,所提算法在推荐命中率上与基准模型基于深度学习的项目协同过滤(DeepICF)算法相比分别提升了2.3个百分点和1.5个百分点,验证了该算法在为用户进行个性化推荐上的有效性。 相似文献
19.
不同参数Gabor滤波器都具有各自的频率选择和方向选择特性,图像中纹理基元可以利用多个方向和中心频率Gabor滤波器组提取出来的频谱值来表示.据此提出一种适应于显微图像的Gabor滤波边缘检测算法.使用特定不同方向Gabor滤波边缘提取算子对图像进行边缘信息提取,获得不同方向上边缘特征信息,对其进行分析和融合提取图像边缘.运用该方法时所获不同方向的图像边缘进行自适应融合,获得的图像边缘较理想,模糊的边缘得到增强,并有效地消除了噪声.实验结果表明,该算法对显微图像处理有效,检测到的边缘清晰. 相似文献
20.
针对常规的粒子滤波算法存在粒子权值退化和采样粒子贫化以及需要大量粒子才能进行比较准确的状态估计的问题,提出了一种基于混沌的萤火虫改进粒子滤波算法.利用混沌系统所具有的遍历性和随机性初始化粒子群,使得初始粒子分布更加均匀,同时向常规粒子滤波算法中引进萤火虫算法的寻优机制,使得粒子能够向高似然区域运动,提高了滤波精度,并对部分权值优秀粒子进行混沌细搜索,对部分权值低的粒子进行再生,提高了种群多样性.实验表明:该方法尤其是在粒子种群数量较小的情况下,较常规粒子滤波精度更高,并有效地改善了权值退化和样本贫化问题. 相似文献