首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The flow pattern and transition law of gas-liquid two-phase flow in inclined rising pipe under different fluctuant nonlinear vibration conditions were studied experimentally. The flow patterns of gas-liquid two-phase flow under fluctuant nonlinear vibration condition were identified by using high-speed camera. The results show that there are four kinds of patterns in inclined rising pipe with diffuse bubble flow, fluctuant slug flow, proto slug flow and liquid-ring annular flow. The mechanisms of the transition from diffuse bubble flow to fluctuant slug flow, proto slug flow to liquid-ring annular flow were derived, the vibration parameter was added on the basis of the steady state transition mechanism and the flow pattern transition formulae considering the vibration acceleration were established. The results show that the flow pattern transition formulae established in this paper agree well with the experimental results.  相似文献   

2.
本文对不同起伏非线性振动条件下倾斜上升管内气液两相流流型及转变规律进行实验研究,借助高速摄影仪对起伏非线性振动状态下气液两相流的流型进行分类。结果表明,倾斜上升管气液两相流有弥散泡状流、起伏弹状流、准弹状流和液环式环状流4种。对弥散泡状流向起伏弹状流和准弹状流向液环式环状流的转变机理进行分析,在稳定状态转变机理的基础上引入振动参数,建立了考虑振动加速度的关系式。本文建立的流型转变关系式与实验结果吻合较好。  相似文献   

3.
The off-take and the slug transition on air-water interface are experimentally investigated at the T-junction of the horizontal pipe with a vertical upward branch to simulate the loss-of-residual-heat-removal during a mid-loop operation in the Korea standard nuclear power plant. Scaling analysis is performed to scale down the experimental facility to the reference nuclear power plant. Two different diameters of branch pipes are used to verify the scaling laws and their scale effects. Air is used as working gaseous fluid and no water flow exists. Off-take behavior on horizontal stratified and slug flows is visually observed in the horizontal pipe. The experimental data are divided into three categories; onset of liquid entrainment at T-junction, onset of slug transition in the horizontal pipe, and discharge quality in the branch pipe. It is found out that the scale effect of the branch diameter on the onset of liquid entrainment is small and the existing correlations for it are applicable. Also, the onset of slug transition shows a discrepancy with Taitel-Dukler's correlation and has a strong influence on the discharge quality. New correlations for discharge quality are developed considering the critical dependency of the onset of slugging.  相似文献   

4.
为探究气液两相流流型从无旋状态转变为螺旋状态前后的流型特征及空泡份额时空分布特性,基于高速摄影仪和自主开发的丝网传感器(WMS)测量技术,对内径为30 mm的水平管内起旋装置作用下空气-水两相流的相态时空演变特性进行了可视化实验研究。结果表明,在起旋器诱导的离心力作用下,流场内存在明显的气泡聚并行为和液滴沉积现象,其中,泡状流将转变为螺旋气柱流,塞状流转变为螺旋间歇流,弹状流转变为螺旋环状流,环状流转变为螺旋丝带流;相比于弹状流和环状流,泡状流和塞状流的截面平均空泡份额在起旋器出口波动幅值明显减弱,但离心力场并未明显改变各流型从无旋状态转变为螺旋状态前后的截面平均空泡份额。   相似文献   

5.
以空气和水为工质,应用高速摄像仪,对竖直窄矩形通道(3.25 mm×40 mm)内气液两相弹状流进行了可视化实验研究。气、液相表观速度分别为0.1~2.51 m/s和0.16~2.62 m/s,工作压力为常压。实验中发现窄矩形通道内弹状流与圆管中存在较大差别,气弹多发生变形,高液相流速时变形更为严重。窄边液膜含气量较高,在高液相流速时窄边液膜不下落,宽边液膜中含有由气弹头部进入和气弹尾部进入的气泡。气弹速度受气弹头部形状和宽度影响较大,受气弹长度影响较小。气弹速度可由Ishii & Jones-Zuber模型计算,但在低液相折算速度时偏差较大,其主要原因为漂移速度计算值较实验值偏小。  相似文献   

6.
垂直管空气-水两相流型的Shannon信息熵特性研究   总被引:8,自引:2,他引:6  
利用信息论原理,研究两相流流型的Shannon信息熵特性。Shannon信息熵可由两相流系统的时间相关信号(如压差)的功率谱密度计算得到。在两相流实验台架上进行了垂直管两相流试验研究,通过调节空气和水的体积流量,获得不同流型工况下压差信号的实验数据。计算不同流型下的Shannon信息熵,发现泡状流的负Shannon信息熵(负熵)最小,弹状流的负熵最大,而环状流的负熵界于两者之间。  相似文献   

7.
A wavy-dispersed flow regime was observed between slug and annular-dispersed flow regimes in TPTF high-pressure steam/water horizontal pipe experiments, employing the video probe visual observation. The onset OF entrainment was identified to cause slug to wavy-dispersed flow transition. The wavy-dispersed flow regime extended towards lower gas flow rates as pressure was increased. Furthermore, it was found that the gas-liquid relative velocity for the onset of entrainment decreases significantly, resulting in decrease in the minimum void fraction. Consequently, the slug flow regime was found to disappear for pressures above 8.6MPa, as observed in the previous TPTF experiments. Applicability of available models and correlations on the onset of entrainment was assessed against the TPTF data. Steen-Wallis parameter correlated the data well when the superficial gas velocity term in this parameter 1s replaced by the gas-liquid relative velocity.  相似文献   

8.
在起伏振动状态下对倾斜管内气液两相流进行了实验研究。将振动装置与两相流实验回路相结合,改变管道倾角和振动频率、振幅,分析其对流型转变的影响。研究发现振动条件下的流型与稳态下相比有较大区别,通过对流型分类发现两种新流型为珠状流、起伏弹状流。绘制流型转换边界图结果表明,倾角的增加使起伏弹状流在流型图中的区域扩张,其他流型的区域相对减小。振动频率和振幅对流型转换边界的影响相似,振动频率和振幅增加会使珠状流和准弹状流区域有所增加。3种变化因素中振动频率对流型转变的影响最大。  相似文献   

9.
基于流动机理的分析建立了塞状流参数预测模型;模型中考虑了液膜的厚度变化.分析了液膜厚度变化对预测结果产生的影响,并用公开发表的数据对模型进行了验证.分析表明,若忽略液膜厚度的变化,将Taylor泡简化为圆柱体,会使其长度的预测值偏小,导致压力梯度的预测出现正偏差,且偏差会随气相表观速度的增加而增大.新建模型反映了液膜的流动特性,可对不同来源的数据进行较为准确的预测.  相似文献   

10.
In a companion paper, mechanistic models of major fluid particle interaction phenomena involving two bubble groups have been proposed. The prediction of interfacial area concentration evolution using the one-dimensional two-group transport equation and evaluation with experimental results are performed in the paper. These evaluations are based on solid databases for a 2-inch air–water loop with sufficient information on the axial development and the radial distribution of the local parameters. Model evaluation strategies are systematically analyzed. The predictions for the interfacial area concentration evolution demonstrate satisfactory accuracy. The proposed model predicts a smooth transition across the bubbly-to-slug flow regime boundary and demonstrates mechanisms for the generation and development of the cap/slug bubble group. The two-group interfacial area transport equation covers a wide range from bubbly, slug, to churn turbulent flow regimes for adiabatic air–water upward flow in moderate diameter pipes. The generality of the interfacial transport model is also discussed.  相似文献   

11.
弹状流的液弹部分受气弹尾部影响,其水力特性参数沿流动方向存在分区的不一致性。本文对竖直窄矩形通道中弹状流液弹内参数的分布特性进行了研究。结果表明:液弹内气泡在近壁面附近所受径向力较为平衡,气泡频率较大;随着远离气弹尾部,管道中间气泡频率逐渐增大。根据气泡频率波动变化将液弹分为3个区域,尾流区占液弹长度的40%~45%,过渡区占10%~15%,主流区占40%~50%。尾流区和主流区内,空泡份额呈“三峰型”分布;随着气相流速的增加,尾流区内近壁面处峰值逐渐增大,管道中间峰值逐渐下降,但主流区内情况相反。气泡直径随气相流速的增大而变大,且液弹内气泡聚合和破碎现象较少。  相似文献   

12.
The interfacial friction was investigated for high-pressure (3 to 9 MPa) steam/water stratified-wavy flow, using the TPTF experimental data for 4 and 8-inch diameter horizontal pipe test sections. The interfacial waves observed in the stratified-wavy flow regime with void fractions typically <–0.6, became larger in r.m.s. amplitude and more irregular in both amplitude and wave length, as the transition boundary to slug flow was approached. A correlation to predict the interfacial friction factor has been obtained for the stratified-wavy flows including the vicinity of the transition boundary to slug flow. The correlation is based on two non-dimensional parameters related to the interfacial wave generation by the Kelvin-Helmholtz instability, and correlates the TPTF data taken under different pipe diameters and pressures.  相似文献   

13.
研究两相流相间阻力特性对系统程序关键本构模型封闭具有重要意义。本文基于竖直圆管开展了空气-水两相流实验,采用四探头电导探针对空泡份额、气泡弦长和界面面积浓度等气泡参数的径向分布进行了测量。结果表明空泡份额和气泡弦长呈现“核峰型”分布,而界面面积浓度并没有表现出随流速的单调关系。进一步开发了泡状流和弹状流的相间曳力模型,考虑了液相表观流速与管径对气泡尺寸分布的影响,建立了临界韦伯数与不同液相流速的关系。计算得到的空泡份额和界面面积浓度与实验数据整体符合较好,验证了模型的可靠性,为两相流相间阻力特性研究提供参考意义。  相似文献   

14.
Distribution of void fraction for gas-liquid slug flow in an inclined pipe   总被引:1,自引:0,他引:1  
In order to investigate the effect of inclination angle on the spatial distribution of phases,experiments on gas-liquid two-phase slug flow in an inclined pipe were carried out by using the optical probe and an EKTAPRO 1000 high speed motion analyzer.It has been demonstrated that the inclination angle and the mixture velocity are important parameters to influence the distribution of void fraction for upward slug flow in the inclined pipe.At high mixture velocity,the gas phase profile is axial symmetry in the cross-section of the pipe.This is similar to that for vertical slug flow.In contrast.most of the gas phase is located near the upper pipe wall at low mixture velocity.By measuring the axial variation of void fraction along the liquid slug.it can be concluded that there is a high void fraction wake region with length of 3-4D in the front of liquid slug.In the fully developed zone of liquid slug.the peak value of the void fraction is near the upper wall.  相似文献   

15.
The purpose of the experimental study is to investigate the effects of pipe inclination, pipe length, pipe diameter and surface tension of the working liquid on the onset of flooding of gas–liquid adiabatic counter-current two-phase flow in inclined pipes. Flooding in inclined pipes were observed by using the combination of visual observation, measurement of discharged liquid flow rate and time variation of liquid hold-up. And it was defined as the maximum air flow rate at which the discharged liquid flow rate is equal to the inlet liquid flow rate. As a result we proposed a correlation to predict the flooding gas velocity in inclined pipes under a given liquid flow rate, and the predictions agreed well with the experimental observations.  相似文献   

16.
Gas-liquid slug flow is investigated experimentally in vertical and inclined tubes.The non-invasive measuremnts of the gas-liquid slug flow are taken by using the EKTAPRO 1000 High Speed Motion Analyzer.The information on the velocity of the Talyor bubble,the size distribution of the dispersed bubbles in the liquid slugs and some characteristics of the liquid film around the Taylor bubble are obtained.The experimental results are in good agreement with the available data.  相似文献   

17.
In several void fraction measurement methods, a constant electric current method which is one of conductance methods is focused in the present study. By using this method, void fraction can be measured with higher temporal resolution. However, it has been mainly applied to annular flow in previous studies. In the present study, Maxwell's estimation, Bruggemann's estimation, low void fraction approximation and new estimations which consider the bubble shape are applied in order to measure more accurately void fraction of dispersed bubbly flow and slug flow. To understand the effect of bubble shapes and flow patterns, void fraction was measured by the constant electric current method for a rising single spherical bubble and a rising single slug bubble without a forced convection. In addition, void fraction was also measured in bubbly flow and bubbly-slug flow with a forced convection. Then, effects of flow patterns on the proposed estimations of void fraction and the accuracy of their estimations were discussed with the measurement results. From the result, the new estimations which consider a bubble shape are more accurate than the previous estimation in a slug bubble and bubbly-slug flow.  相似文献   

18.
Countercurrent two-phase flow associated with filling of sealed vessels via gravity-driven liquid injection through inclined channels was experimentally studied and analytically modeled. Experiments were performed using transparent tubular test sections connected at one end to the bottom of a large, open water tank, and at the other end to an unvented tank. The test section parameters (including the channel diameter (1.27–2.54cm), length (30.5–122 cm), angle of inclination with respect to horizontal plane (0–30°), and the empty volume in the sealed vessel) were systematically varied. Flow regimes in the test section were recorded and transient flow rates were measured during the experiments. Oscillatory, and intermittent stratified slug, were dominant flow regimes in most tests. The quasi-steady liquid superficial velocity in the test section was sensitive to the test section dimensions, and varied in the range 0.04–0.95 m s−1. These flow regimes were mechanisally modeled. The models are shown to satisfactory predict the measured hydrodynamic parameters.  相似文献   

19.
Water hammer due to steam bubble collapse when cold water is admitted to vertical upward flowing, vertical downward flowing, and nominally horizontal pipes has been studied both experimentally and analytically. The work in horizontal pipes included a study of the effect of a slight downward inclination, a slight upward inclination, and the length of the pipe on the initiation of water hammer. Stability maps showing the combinations of filling velocities and liquid subcooling that cause water hammer and those which do not for each flow geometry were obtained from experiments. Analytical models were developed to predict those stability boundaries in the stability maps. All these models were tested with experimental data. Based on the verified models, a step-by-step approach for each flow geometry is presented for plant engineers and designers to follow in avoiding water hammer induced by steam bubble collapse.  相似文献   

20.
开式自然循环系统作为新型非能动余排系统最终热阱排放回路,其安全稳定运行对于事故工况下堆芯余热安全导出至关重要,本研究通过可视化实验方法观察了开式自然循环系统出口排热管内流型演化特性,发现随着加热功率增加,开式自然循环逐步建立,该系统出口排热管内依次出现单相流、间歇性汽泡流、弥散泡状流、弹状流和间歇喷射流5种典型流型,分析了出口排热管内流型与系统稳定运行之间的关系,发现了开式自然循环系统剧烈振荡的根源,为提高开式自然循环系统流动稳定性提供了参考。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号