首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highly intermittent power from renewable energy sources (RES) along with load and system perturbations in an autonomous microgrid (MG), results in large frequency fluctuations. Conventional controllers like PI controllers to be unable to provide acceptable performance over a wide range of operating conditions. To overcome this problem, present paper introduces a novel two-stage adaptive fuzzy logic based PI controller for frequency control of MG. In this proposed controller, particle swarm optimization (PSO) and grey wolf optimization (GWO) are used to optimize the membership functions (MFs) and rule base of fuzzy logic based PI controller. The proposed controller is examined on an MG test system, the robustness and performance of the proposed controller is tested in presence of different disturbance scenarios and parametric uncertainties. Finally, the superiority of the proposed controller is shown by comparing the results with various controllers available in literature like PSO tuned fuzzy logic based PI controller, fuzzy logic-based PI controller and also with the conventional PI controller.  相似文献   

2.
This paper highlights the load frequency control using dual mode Bat algorithm based scheduling of PI controllers for interconnected power systems. The bat inspired algorithm based on the echolocation of bats has been developed in 2010. In this study, the bat inspired algorithm based dual mode PI controller is applied to the multi-area interconnected thermal power system in order to tune the parameter PI controllers. The proposed controller is simple in structure and easy for implementation. The proposed controller was compared with those from conventional the PI controllers and Fuzzy gain scheduling of PI controllers. The simulation results show the point that the proposed bat inspired algorithm, based dual mode gain scheduling of PI controllers (BIDPI), provides better transient as well as steady state of response. It is also found that the proposed controller is less sensitive to the changes in system parameters.  相似文献   

3.
The primary aim of the Automatic Generation Control (AGC) is to maintain system frequency and tie-line interchanges in a predestine limits by regulating the power generation of electrical generators, in case of fluctuations in the system frequency and tie-line loadings. This paper proposes a new online intelligent strategy to realize the control of multi-area load frequency systems. The proposed intelligent strategy is based on a combination of a novel heuristic algorithm named Self-Adaptive Modified Bat Algorithm (SAMBA) and the Fuzzy Logic (FL) which is used to optimally tune parameters of Proportional–Integral (PI) controllers which are the most popular methods in this context. The proposed controller guaranties stability and robustness against uncertainties caused by external disturbances and impermanent dynamics that power systems face. To achieve an optimal performance, the SAMBA simultaneously optimizes the parameters of the proposed controller as well as the input and output membership functions. The control design methodology is applied on four-area interconnected power system, which represents a large-scale power system. To evaluate the efficiency of the proposed controller, the obtained results are compared with those of Proportional Integral Derivative (PID) controller and Optimal Fuzzy PID (OFPID) controller, which are the most recent researches applied to the present problem. Simulation results demonstrate the successfulness and effectiveness of the Online-SAMBA Fuzzy PI (MBFPI) controller and its superiority over conventional approaches.  相似文献   

4.
Open communication system in modern power systems brings concern about information staleness which may cause power system frequency instability. The information staleness is often characterized by communication delay. However, communication delay is a packet-centered metric and cannot refect the requirement of information freshness for load frequency control (LFC). This paper introduces the age of information (AoI), which is more compre-hensive and informative than the conventional communication delay modeling method. An LFC controller and com-munication are integrated into the design for LFC performance improvement. An AoI-aware LFC model is formulated frst, and considering each allowable update period of the smart sensor, diferent AoI-aware PI controllers are then designed according to the exponential decay rate. The right AoI-aware controller and update period are selected according to the degree of frequency fuctuation of the power system. Case studies are carried out on one-area and two-area power systems. The results show the superior performance of the AoI-aware controllers in comparison to the delay-dependent controllers.  相似文献   

5.
This paper deals with a novel quasi-oppositional harmony search algorithm (QOHSA) based design of load frequency controller for an autonomous hybrid power system model (HPSM) consisting of multiple power generating units and energy storage units. QOHSA is a novel improved version of music inspired harmony search algorithm for obtaining the best solution vectors and faster convergence rate. In this paper, the efficacy of the proposed QOHSA is adjudged for optimized load frequency control (LFC) of an autonomous HPSM. The studied HPSM consists of renewable/non-renewable energy based generating units such as wind turbine generator, solar photovoltaic, solar thermal power generator, diesel engine generator, fuel cell with aqua-electrolyzer while energy storage units consists of battery energy storage system, flywheel energy storage system and ultra-capacitor. Gains of the conventional controllers such as integral (I) controller, proportional–integral (PI) controller and proportional–integral–derivative (PID) controller (installed as frequency controller one at a time in the proposed HPSM) is optimized using QOHSA to mitigate any frequency deviation owing to sudden generation/load change. In order to corroborate the efficacy of QOHSA, performance of QOHSA to design optimal LFC is compared with that of other well-established technique such as teaching learning based optimization algorithm (TLBOA). The comparative performances of the HPSM under the action of QOHSA/TLBOA based optimized conventional controllers (I or PI or PID) are investigated and compared in the present work. It is found that the QOHSA tuned frequency controllers improves the overall dynamic response in terms of settling time, overshoot and undershoot in the profile of frequency deviation and power deviation of the studied HPSM.  相似文献   

6.
为了提高三相电压型脉宽调制(PWM)整流器的动态响应速度和控制精度,提出了一种基于整流桥输入端电压动态分量优化的模型预测功率控制算法。首先,建立了三相PWM整流器dq旋转坐标系下的功率数学模型,分析了传统基于比例-积分(PI)控制器的直接功率控制算法的工作原理。然后,针对传统基于PI控制器的直接功率控制算法的内环功率PI控制器参数设计复杂及动态响应速度慢等缺点,从整流桥输入端电压动态分量优化的角度出发,借鉴模型预测控制思想,通过评价函数预测最优动态分量,在取消了功率内环PI控制器的同时提高了系统的动态响应速度和控制精度。最后,对所提模型预测功率控制和传统基于PI控制器的直接功率控制算法分别进行半实物实验对比研究,实验结果证明了所提算法的正确性和有效性。  相似文献   

7.
This paper presents a robust decentralized proportional-integral (PI) control design as a solution of the load frequency control (LFC) in a multi-area power system. In the proposed methodology, the system robustness margin and transient performance are optimized simultaneously to achieve the optimum PI controller parameters. The Kharitonov’s theorem is used to determine the robustness margin, i.e., the maximal uncertainty bounds under which the stable performance of the power system is guaranteed. The integral time square error (ITSE) is applied to quantify the transient performance of the LFC system. In order to tune the PI gains, the control objective function is optimized using the genetic algorithm (GA). To validate the effectiveness of the proposed approach, some time based simulations are performed on a three-area power system and the results are then compared with an optimal PI controller. The comparisons show that the proposed control strategy provides the satisfactory robust performance for the wide range of system parameters and load changes in the presence of system nonlinearities and is superior to the other methods.  相似文献   

8.
分布式电源出力不确定性和负荷功率扰动给孤立多微电网系统稳定带来较大威胁。提出基于多智能体柔性动作评价(MA-SAC)算法的孤立多微电网负荷频率控制器(LFC),同时采用柔性动作评价(SAC)算法对自动电压调节器(AVR)的比例积分(PI)控制参数进行优化调整。建立了多微电网LFC和AVR组合模型。对于电压和频率控制器的设计,分别根据SAC算法和多智能体深度强化学习(MA-DRL)框架建立各自的状态、动作空间与奖励函数。选择合适的神经网络与训练参数经过预学习生成深度强化学习控制器。最后通过仿真分析,基于SAC算法优化的PI控制器能更快跟踪电压参考值;多微电网系统遭遇功率扰动时,MA-SAC控制器可以快速维持频率稳定。  相似文献   

9.
蚁群优化PI控制器在静止无功补偿器电压控制中的应用   总被引:9,自引:3,他引:6  
静止无功补偿器(static var compensator,SVC)通常用来进行负荷补偿或系统补偿,在系统补偿时往往用于电压稳定控制,针对电压稳定控制的工况,文中提出一种采用蚁群算法优化PI控制器参数的方法,克服了常规PI控制对被控对象数学模型的依赖性,简单易于实现。蚁群优化算法中,以时间与误差绝对值乘积积分(integral of time-weighted absolute error,ITAE)准则作为寻优目标函数,对PI控制器的比例、积分参数进行调整、寻优,使SVC系统的响应过程达到最优。仿真和实验结果表明,该最优PI控制器能快速跟踪SVC系统的电压设定值,基于该PI控制器的SVC能迅速进行无功补偿,具有较强的适应性和较高的补偿精度。  相似文献   

10.
This paper presents the effect on application of biogeography optimization (BBODMFOPI) based dual mode gain scheduling of fractional order proportional integral controllers for load frequency control (LFC) of a multi source multi area interconnected power systems. This controller has three parameters to be tuned. Thus, it provided one more degree of freedom in comparison with the conventional proportional integral (PI) controller. For proper tuning of the controller parameters, Biogeography-Based Optimization (BBO) was applied. BBO is a novel evolutionary algorithm which involves the methodology of making the system effectively by using mathematical techniques. The dual mode concept is also incorporated in this work, because it can improve the system performance. In this work, simulation investigations were taken out on a two-area power system with different generating units. The simulation results show that the proposed biogeography optimization based dual mode gain scheduling of fractional order PI controllers, provide better transient as well as steady state response. It is also found that the proposed controller is less sensitive to the changes in system parameters and robust under different operating condition of the power systems.  相似文献   

11.
针对发电能源结构的多元化发展给互联电网负荷频率的稳定性控制带来较大的挑战,建立含抽水蓄能电站的两区域互联电网多元混合发电的负荷频率控制模型,提出一种基于粒子群优化算法的负荷频率线性自抗扰控制器参数整定优化策略,通过粒子群算法的迭代寻优计算获得最优的线性自抗扰控制器参数.考虑互联电网各区域发生不同的负荷扰动,在抽水蓄能电...  相似文献   

12.
In this paper, a novel hybrid Particle Swarm Optimization (PSO) and Pattern Search (PS) optimized fuzzy PI controller is proposed for Automatic Generation Control (AGC) of multi area power systems. Initially a two area non-reheat thermal system is used and the gains of the fuzzy PI controller are optimized employing a hybrid PSO and PS (hPSO-PS) optimization technique. The superiority of the proposed fuzzy PI controller has been shown by comparing the results with Bacteria Foraging Optimization Algorithm (BFOA), Genetic Algorithm (GA), conventional Ziegler Nichols (ZN), Differential Evolution (DE) and hybrid BFOA and PSO based PI controllers for the same interconnected power system. Additionally, the proposed approach is further extended to multi source multi area hydro thermal power system with/without HVDC link. The superiority of the proposed approach is shown by comparing the results with some recently published approaches such as ZN tuned PI, Variable Structure System (VSS) based ZN tuned PI, GA tuned PI, VSS based GA tuned PI, Fuzzy Gain Scheduling (FGS) and VSS based FGS for the identical power systems. Further, sensitivity analysis is carried out which demonstrates the ability of the proposed approach to wide changes in system parameters, size and position of step load perturbation The proposed approach is also extended to a non-linear power system model by considering the effect of governor dead band non-linearity and the superiority of the proposed approach is shown by comparing the results of hybrid BFO-PSO and craziness based PSO approach for the identical interconnected power system. Finally, the study is extended to a three area system considering both thermal and hydro units with different controllers in each area and the results are compared with hybrid BFO-PSO and ANFIS approaches.  相似文献   

13.
Grid frequency variation causes phase angle deviation in current with respect to voltage. This is sensed at the phase-locked loop in the controller. In past studies the effect of grid frequency variation is neglected while designing the controller for power quality restoration. When modern grids are connected to large numbers of non-linear loads and various types of distributed generation (DG), it results in continuous variation in grid frequency. Thus it is necessary to consider the grid frequency variation for effective power quality restoration. However, tuning of conventional PI controller gains considering frequency variation is very difficult. Thus it is necessary to develop an adaptive intelligent nonlinear controller to tackle the effects of frequency variation, voltage distortion and non-linear load simultaneously. This paper presents the importance of considering the effects of the frequency variation, grid voltage distortion and non-linear load, while designing and deploying a controller for power quality restoration. The proposed controller supplies power to local load as well as transferring surplus power to the grid from DG along with the additional benefit of improving grid power quality. A DG with an ANFIS optimized PI current controller for power quality enhancement is proposed. The method is economical as it requires no additional hardware. Results are compared with PI, PI-RC and fuzzy current controllers to validate the effectiveness of the proposed controller.  相似文献   

14.
This paper investigates a renewable energy resource’s application to the Load–Frequency Control of interconnected power system. The Proportional-Integral (PI) controllers are replaced with Proportional-Integral Plus (PI+) controllers in a two area interconnected thermal power system without/with the fast acting energy storage devices and are designed based on Control Performance Standards (CPS) using conventional/Beta Wavelet Neural Network (BWNN) approaches. The energy storing devices Hydrogen generative Aqua Electroliser (HAE) with Fuel cell and Redox Flow Battery (RFB) are incorporated to the two area interconnected thermal power system to efficiently damp out the electromechanical oscillations in the power system because of their inherent efficient storage capacity in addition to the kinetic energy of the generator rotor, which can share the sudden changes in power requirements. The system was simulated and the frequency deviations in area 1 and area 2 and tie-line power deviations for 5% step- load disturbance in area 1 are obtained. The comparison of frequency deviations and tie-line power deviations of the two area interconnected thermal power system with HAE and RFB designed with BWNN controller reveals that the PI+ controller designed using BWNN approach is found to be superior than that of output response obtained using PI+ controller. Moreover the BWNN based PI+ controller exhibits a better transient and steady state response for the interconnected power system with Hydrogen generative Aqua Electroliser (AE) unit than that of the system with Redox Flow Battery (RFB) unit.  相似文献   

15.
基于Laguerre模型的过热汽温自适应预测PI控制系统   总被引:3,自引:0,他引:3  
针对火电厂锅炉过热汽温控制的特点,设计1种基于Laguerre模型的自适应预测PI控制器。该预测控制器采用对时延具有良好逼近能力的正交Laguerre函数模型作为预测模型,利用带遗忘因子的最小二乘法在线辨识Laguerre预测模型的系数,以提高系统适应工况变化的能力;滚动优化指标采用比例积分型结构,以提高系统的快速性和鲁棒性。通过对具有严重参数不确定性、扰动以及大迟滞的电厂过热汽温被控对象进行仿真研究,结果表明该方法能够很好地适应对象特性的变化,且控制系统的性能比常规串级控制系统有较大提高。  相似文献   

16.
In this paper, a novel hybrid Firefly Algorithm and Pattern Search (hFA–PS) technique is proposed for Automatic Generation Control (AGC) of multi-area power systems with the consideration of Generation Rate Constraint (GRC). Initially a two area non-reheat thermal system with Proportional Integral Derivative (PID) controller is considered and the parameters of PID controllers are optimized by Firefly Algorithm (FA) employing an Integral Time multiply Absolute Error (ITAE) objective function. Pattern Search (PS) is then employed to fine tune the best solution provided by FA. The superiority of the proposed hFA–PS based PID controller has been demonstrated by comparing the results with some recently published modern heuristic optimization techniques such as Bacteria Foraging Optimization Algorithm (BFOA), Genetic Algorithm (GA) and conventional Ziegler Nichols (ZN) based PI/PID controllers for the same interconnected power system. Furthermore, sensitivity analysis is performed to show the robustness of the optimized controller parameters by varying the system parameters and operating load conditions from their nominal values. Finally, the proposed approach is extended to multi area multi source hydro thermal power system with/without considering the effect of physical constraints such as time delay, reheat turbine, GRC, and Governor Dead Band (GDB) nonlinearity. The controller parameters of each area are optimized under normal and varied conditions using proposed hFA–PS technique. It is observed that the proposed technique is able to handle nonlinearity and physical constraints in the system model.  相似文献   

17.
This paper presents application of fuzzy logic controlled superconducting magnetic energy storage device, SMES to damp the frequency oscillations of interconnected two-area power systems due to load excursions. The system frequency oscillations appear due to load disturbance. To stabilize the system frequency oscillations, the active power can be controlled via superconducting magnetic energy storage device, SMES. The error in the area control and its rate of change is used as controller input signals to the proposed fuzzy logic controller. In order to judge the effect of the proposed fuzzy logic controlled SMES, a comparative study is made between its effect and the effect of the conventional proportional plus integral (PI) controlled SMES. The studied system consists of two-area (thermal–thermal) power system each one equipped with SMES unit. The time simulation results indicate the superiority of the proposed fuzzy logic controlled SMES over the conventional PI SMES in damping the system oscillations and reach quickly to zero frequency deviation. The system is modeled and solved by using MATLAB software.  相似文献   

18.
针对采用传统比例积分(proportional integral, PI)控制算法的感应电机在面对复杂扰动时控制性能降低的问题,基于矢量控制系统,提出了感应电机的自抗扰(active disturbance rejection control, ADRC)无模型预测控制(model-free predictive control, MFPC)方法。首先,结合转速环和磁链环数学模型,设计了转速环和磁链环的ADRC控制器,对负载变化和内参摄动产生的内外扰动进行观测并补偿。其次,为避免内环控制器对电机参数的依赖,基于无模型控制原理,建立了dq电流环的超局部方程,将控制量之外的变量视为干扰量,并引入非线性扩张状态观测器估计干扰量。最后,结合预测控制思想设计了电流环控制器,得到开关状态作用于逆变器。仿真与实验结果表明提出的算法相对PI算法有更好的抗扰性和鲁棒性,可以有效提高感应电机的动态和稳态性能。  相似文献   

19.
The Load Frequency Control (LFC) problem has been a major subject in electrical power system design/operation. LFC is becoming more significant recently with increasing size, changing structure and complexity in interconnected power systems. In practice LFC systems use simple Proportional Integral (PI) controllers. As the PI control parameters are usually tuned, based on classical approaches. Moreover, they have fixed gains; hence are incapable of obtaining good dynamic performance for a wide range of operating conditions and various load changes, in multi-area power system. Literature shows that fuzzy logic controller, one of the most useful approaches, for utilizing expert knowledge, is adaptive in nature and is applied successfully for power system stabilization control. This paper proposes a Type-2 (T2) fuzzy approach for load frequency control of two-area interconnected reheat thermal power system with the consideration of Generation Rate Constraint (GRC). The performance of the Type-2 (T2) controller is compared with conventional controller and Type-1 (T1) fuzzy controller with regard to Generation Rate Constraint (GRC). The system parametric uncertainties are verified by changing parameters by 40% simultaneously from their typical values.  相似文献   

20.
Social foraging behavior of Escherichia coli bacteria has recently been explored to develop a novel algorithm for distributed optimization and control. The Bacterial Foraging Optimization Algorithm (BFOA), as it is called now, is currently gaining popularity in the community of researchers, for its effectiveness in solving certain difficult real world optimization problems. This paper proposes BFOA based Load Frequency Control (LFC) for the suppression of oscillations in power system. A two area non-reheat thermal system is considered to be equipped with proportional plus integral (PI) controllers. BFOA is employed to search for optimal controller parameters by minimizing the time domain objective function. The performance of the proposed controller has been evaluated with the performance of the conventional PI controller and PI controller tuned by genetic algorithm (GA) in order to demonstrate the superior efficiency of the proposed BFOA in tuning PI controller. Simulation results emphasis on the better performance of the optimized PI controller based on BFOA in compare to optimized PI controller based on GA and conventional one over wide range of operating conditions, and system parameters variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号