首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Pu-rich agglomerates in U-Pu mixed oxide (MOX) fuel on a lattice calculation has been demonstrated. The Pu-rich agglomerate parameters are defined based on the measurement data of MIMAS-MOX and the focus is on the highly enriched MOX fuel in accordance with increased burnup resulting in a higher volume fraction of the Pu-rich agglomerates. The lattice calculations with a heterogeneous fuel model and a homogeneous fuel model are performed simulating the PWR 17 × 17 fuel assembly. The heterogeneous model individually treats the Pu-rich agglomerate and U-Pu matrix, whereas the homogeneous model homogenizes the compositions within the fuel pellet. A continuous-energy Monte Carlo burnup code, MVP-BURN, is used for burnup calculations up to 70 GWd/t. A statistical geometry model is applied in modeling a large number of Pu-rich agglomerates assuming that they are distributed randomly within the MOX fuel pellet. The calculated nuclear characteristics include k-inf, Pu isotopic compositions, power density and burnup of the Pu-rich agglomerates, as well as the pellet-averaged Pu compositions as a function of burnup. It is shown that the effect of Pu-rich agglomerates on the lattice calculation is negligibly small.  相似文献   

2.
In the design of fast reactor core with higher burnup and higher linear power, prediction accuracy of burnup history of fuel pin should be upgraded so as to assure fuel integrity without extra design margin under increased neutron fluence and burnup. A method is studied to predict fuel pin-wise power and its burnup history in fast reactors accurately based on an analytic solution of diffusion theory equation on hexagonal geometry with boundary condition from core calculation by finite-differenced diffusion calculation code. The present method is applied to a fast reactor core model, and its accuracy in predicting fuel pin power is tested. The result is compared with the reference solution by the finite difference calculation with very fine mesh. It is found that the present method predicts the power peaking factors in fuel assemblies accurately. The fuel pin-wise nuclide depletion calculation is also done using neutron fluxes for each fuel pin. The result shows that the fuel pin-wise depletion calculation is very important in predicting the burnup history of the fuel assembly in detail.  相似文献   

3.
Plutonium concentrations and burnup at Pu spots were calculated in U-Pu mixed oxide (MOX) fuel pellets for light water reactors with the neutron transport and burnup calculation code VIMBURN. The calculation models were suggested for Pu spots and U matrices in a heterogeneous MOX fuel pellet. The calculated Pu concentrations and burnup at Pu spots were compared with the PIEs data in a MOX pellet (38.8 MWd/kgHM). The calculated Pu concentrations agreed by 5–18% with the measured ones, and the calculated burnup did by less than 10% with the estimated one with the measured Nd concentrations. Commercial PWR types of MOX fuels were also analyzed with the calculation code and the models. Burnup at Pu spot increased as the distance was greater from the radial center of a MOX fuel pellet. Burnup at Pu spots in the peripheral region became 3–5 times higher than pellet average burnup of 40 MWd/kgHM. The diameters (20–100 μm) of Pu spots were not found a significant factor for burnup at Pu spots. In the outer half volume region (outer than r/r o=0.7) of a MOX fuel pellet, burnup at Pu spots exceeded 70MWd/kgHM (the threshold burnup of microstructure change in UO2 fuel pellet) at pellet average burnup of 1430 MWd/kgHM.  相似文献   

4.
Effect of the radial peaking factor limitation on the discharge burnup was examined. In general, lower limitation of the radial peaking factor places restrictions on feasible loading patterns and decreases core performance and economic efficiency. In this paper, relationship between limitation of the radial peaking factor and the discharge burnup was quantitatively investigated in 2-loop and 3-loop PWRs for several cycle lengths and fuel types. Equilibrium cores were generated assuming various radial peaking factor limitations and the change in discharge burnup, which can be considered an index of fuel cycle costs, was evaluated for each case. In order to make accurate comparisons, the generated equilibrium cores were optimized using the OPAL code by the simulated annealing method. From the calculation results, it was revealed that the limitation of the radial peaking factor has considerable impact on the discharge burnup. Relationship between the prediction accuracy of the radial peaking factor and the fuel cycle cost can be also quantitatively estimated from the above results. Therefore, the results can provide a strong motivation to improve in-core fuel management methods.  相似文献   

5.
加速器驱动的次临界系统(ADS)是未来最有可能实现工业化嬗变核废料的装置。通过设计1个10 MW的ADS物理方案,研究ADS的嬗变能力。采用MCNPX和ORIGEN的耦合程序,利用基于ENDF6.8处理所得的6个温度(300、600、900、1 200、1 500、1 800 K)下连续能量核数据库,计算得到ADS随燃耗时间变化的有效增殖因数keff、功率峰因子和质子束流强度。同时通过计算给出了该设计方案下ADS燃料多普勒系数、冷却剂空泡系数和有效缓发中子份额,利用这些物理量研究了该ADS方案的安全特性,并通过燃耗计算研究了ADS的嬗变能力。结果表明,在1 000 d燃耗时长内,keff和质子流强随时间的波动较小,燃料燃耗深度较浅,系统可提升功率运行,在假想事故下系统能保持次临界状态。系统嬗变支持比约为8。  相似文献   

6.
本文采用RMC模拟计算了西安脉冲堆(XAPR)稳态堆芯第1循环燃料元件的精细燃耗分布情况,根据XAPR运行温度制备了多温度点氢化锆的热化截面,计算了零燃耗下XAPR冷态和热态实验的keff。分别考虑燃料棒径向和轴向空间离散化下温度反馈的结果,确定了首循环脉冲堆三维燃耗最深的位置。结果表明,采用燃料棒径向燃耗分区的15 EFPD下D5和G14燃料棒燃耗计算结果较径向不分区的结果更接近实验值,RMC应用于XAPR精细燃耗计算具有较高可靠性,可用于脉冲堆物理计算与安全分析工作。  相似文献   

7.
基于确定论的中子学分析程序在计算氟盐冷却球床高温堆(PB-FHR)时需解决双重非均匀性的燃料球均匀化、燃料球均匀化时出现的泄漏效应及燃料球在堆芯内连续移动与多次通过堆芯的燃料循环模式问题。本文基于DRAGON5与DONJON5程序开发了PB-FHR的燃料管理程序PBMSR,并进行了验证。使用PBMSR对PB-FHR在不同燃料循环模式下进行计算与初步分析,结果显示在多次通过的燃料管理模式下,燃料球的通过次数对最深卸料燃耗影响较小,但对轴向功率分布影响较大。  相似文献   

8.
自主化堆芯三维核设计软件COCO研发   总被引:1,自引:1,他引:0  
中国广东核电集团正在开发的三维堆芯核设计软件COCO将具备堆内功率分布计算、精细功率分布计算、临界硼浓度搜索、控制棒临界搜索、核子密度计算等基本功能。COCO采用格林函数节块方法作为求解器计算堆芯的功率分布,采用单通道模型和棒传热模型来计算慢化剂的密度和燃料温度。COCO已实现从寿期初到寿期末的燃耗计算能力。通过与参考程序的数值比较发现,COCO采用的理论模型和耦合流程正确,计算精度可满足工程设计的需要。  相似文献   

9.
The author developed a code FEMAXI–V to analyze the behaviors of high burnup LWR fuels. FEMAXI–V succeeded the basic structure of code FEMAXI–IV, and incorporated such new models and functions as fuel thermal conductivity degradation with burnup, alliance with burnup analysis code which gives radial power profile and fast neutron flux, etc. In the present analysis, coolant conditions, detailed power histories and specifications of the fuel rods DH and DK of IFA-519.9 irradiated in Halden reactor were input, and calculated rod internal pressures were compared with experimental data for the range of 25–93 MWd kg−1 UO2, and factors affecting pellet temperature were discussed. Also some sensitivity studies were conducted with respect to the effect of swelling rate and grain growth. As a result, it is found that the prediction is sensitive to the models of thermal conductivity and swelling rate of fuel, and FEMAXI–V analytical system proved to give a reasonable prediction even in the high burnup region.  相似文献   

10.
Using separated heavy water as moderator and supercritical water (SCW) as coolant introduces challenge for CANDU-SCWR to get a negative coolant void reactivity (CVR), due to which the moderator thickness of the fuel channel is optimized in this paper. When SCW flows through the core, there is a rapid variation in SCW density, which is directly related to the neutron spectrum and subsequently to the power distribution, so the 3D core neutronics/thermal-hydraulics coupling is needed to accurately evaluate the core coolant density and power distribution. In this paper, the neutronics calculation is computed with 3D fine mesh diffusion code while the thermal-hydraulic calculation is based on single channel model, they are coupled with each other automatically by a link code. Further, the in-core fuel management can be simulated by the link code to search the equilibrium cycle. Based on these calculation models, a CANDU-SCWR equilibrium core is designed with a thermal power of 2540 MW, the core equivalent diameter is 4.30 m and the active length is 5.94 m. A 3-batch fuel management scheme with a cycle length of 350 EFPD is used. The numerical results show that a high average outlet coolant temperature of 625 °C is achieved with a maximum cladding surface temperature less than 850 °C. The maximum linear heat generation rate is 50.6 kW/m, the average discharged burnup is 38.1 GWd/tU, and the CVR is negative throughout the cycle.  相似文献   

11.
COMMEN程序是中国原子能科学研究院开发的钠冷快堆堆芯严重事故分析程序,包含了热工水力学模块、结构模块以及中子学模块。本文介绍COMMEN程序的燃料元件精细模型,该模型对燃料芯块内部节点进行划分,从而详细描述了燃料元件棒的径向温度分布。使用含有燃料元件精细模型的COMMEN程序从反应性反馈方面对中国实验快堆的UTOP(无保护超功率)事故进行计算分析,并将SAS4A程序和COMMEN程序的计算结果进行对比验证。结果显示,燃料元件精细模型计算的燃料温度与SAS4A程序的计算结果符合很好,开发的COMMEN程序适用于UTOP事故分析。  相似文献   

12.
The double-heterogeneity characterising pebble-bed high temperature reactors (HTRs) makes Monte Carlo based calculation tools the most suitable for detailed core analyses. These codes can be successfully used to predict the isotopic evolution during irradiation of the fuel of this kind of cores. At the moment, there are many computational systems based on MCNP that are available for performing depletion calculation. All these systems use MCNP to supply problem dependent fluxes and/or microscopic cross sections to the depletion module. This latter then calculates the isotopic evolution of the fuel resolving Bateman's equations.In this paper, a comparative analysis of three different MCNP-based depletion codes is performed: Montburns2.0, MCNPX2.6.0 and BGCore. Monteburns code can be considered as the reference code for HTR calculations, since it has been already verified during HTR-N and HTR-N1 EU project. All calculations have been performed on a reference model representing an infinite lattice of thorium-plutonium fuelled pebbles. The evolution of k-inf as a function of burnup has been compared, as well as the inventory of the important actinides.The k-inf comparison among the codes shows a good agreement during the entire burnup history with the maximum difference lower than 1%. The actinide inventory prediction agrees well. However significant discrepancy in Am and Cm concentrations calculated by MCNPX as compared to those of Monteburns and BGCore has been observed. This is mainly due to different Am-241 (n,γ) branching ratio utilized by the codes.The important advantage of BGCore is its significantly lower execution time required to perform considered depletion calculations. While providing reasonably accurate results BGCore runs depletion problem about two times faster than Monteburns and two to five times faster than MCNPX.  相似文献   

13.
徐勇  张帏 《核动力工程》1999,20(3):200-204,208
介绍了轻水堆可燃毒物的发展和钆可燃毒物的各种性能,采用压电水堆核电厂燃料元件稳态分析程序FRAPCON-2,分析了200MW核供热堆采用含钆可燃毒物棒的各种设计考虑,并根据其设计参数,对不同含钆量的可燃毒物棒进行了稳态工况的性能分析。  相似文献   

14.
In-pile experiments of fresh fuel rods under reactivity initiated accident (RIA) conditions have been performed in the Nuclear Safety Research Reactor at the Japan Atomic Energy Research Institute in order to understand the basic pellet cladding mechanical interaction (PCMI) behavior. Rapid fuel pellet expansion due to a power excursion would cause radial and longitudinal deformation of the cladding. This PCMI could be one of the possible incipient failure modes of an embrittled cladding of a high burnup fuel under the RIA conditions.

Basic PCMI behavior was studied by measuring cladding deformation of a fresh fuel rod without complicated irradiation effects. The transient elongation measurements of the fuel with two kinds of gap width indicated not only PCMI-induced cladding elongation, but also reduction of the pellet stack displacement by the cladding constraint. In the tests under a high-pressure and high-temperature condition simulating an operation condition of BWRs, additional ridge-type cladding deformation was generated due to the axial collapse of the cladding. A preliminary analysis for interpretation of the tests was made using a computer code for the transient analysis of fuel rods, FRAP-T6.  相似文献   

15.
在高燃耗情况下,燃料芯块的热导率随燃耗降低,该现象被称之为热导率降级(TCD)现象。TCD现象影响失水事故(LOCA)前稳态工况的燃料平均温度和燃料储能,进而影响大破口LOCA过程中的包壳峰值温度(PCT)。本研究采用大破口LOCA分析程序WCOBRA/TRAC对CAP1000冷段双端剪切断裂事故进行了不同燃耗的敏感性分析,并获得了不同工况下的PCT。分析中采用美国核燃料研究所(NFI)修正的TCD模型对降级后的燃料热导率进行模拟,同时考虑了燃耗大于30GW·d/tU后FQ和FΔh峰值因子的降低。敏感性分析表明,考虑TCD和峰值因子降低的影响,PCT极限工况不再出现在低燃耗区间,而出现在燃耗为29GW·d/tU附近。与其他燃耗水平相比,该燃耗点的PCT第1峰值和第2峰值均处于最高水平。本研究结果可为高燃耗情况下非能动电厂大破口LOCA的分析评估提供参考。  相似文献   

16.
轻水堆燃料组件计算程序包TPFAP   总被引:4,自引:4,他引:0  
章宗耀  李大图 《核动力工程》1993,14(2):117-121,192
TPFAP是一个同时适用于PWR和BWR的穿透几率法燃料组件燃耗计算程序包。它首先利用碰撞几率方法在库能群结构下完成三区或四区圆环几何的栅元输运计算。载钆燃料棒或硼棒可燃毒物栅元的有效吸收截面由微燃耗程序CMB产生,两维穿透几率法组件计算是在(x,y)几何下进行。基模计算用来考虑中子泄漏修正。根据反应率等效,计算组件等效扩散参数。在每一燃料棒和可燃毒物棒进行燃耗计算,TPFAP给出每一燃耗步的组件和栅元少群截面、功率分布,提供核设计和安全分析所需参数。  相似文献   

17.
The RANNS code analyzes behavior of a single fuel rod in reactivity-initiated accident (RIA) conditions. The code has two types of mechanical model; one-dimensional deformation model for each axial segment length of rod, and newly-developed two-dimensional local deformation model for one pellet length. Analyses were performed on the RIA-simulated experiments in the Nuclear Safety Research Reactor (NSRR), OI-10 with high burnup PWR rods, and results of cladding deformation were compared between calculations by the two models and PIE data. The pre-accident, or End-of-Life conditions of the rod were predicted by the fuel performance code FEAMXI-6. In the calculations by the two-dimensional model of RANNS, the plastic strain increases at the cladding ridges during PCMI were compared with those in between the ridges and with the PIE data, and effect of stress variance induced by local non-uniformity of strain on the crack growth was discussed.  相似文献   

18.
为实现对压水堆棒状燃料元件的精细化模拟,本文基于有限元平台MOOSE开发了棒状燃料元件性能分析程序BEEs。针对程序的燃耗、氧化层厚度和燃料温度模块分别进行了对比验证,采用BR3 Rod实验算例验证了长期稳态工况下BEEs程序的整体分析功能。结果表明,BEEs程序能获得合理准确的模拟结果,初步具备了稳态工况燃料性能分析能力。  相似文献   

19.
The effective neutron multiplication factor (keff) as a function of burnup for different volume coolant (CoR) and fuel (FR) to cell ratio is presented. Additionally the Conversion Ratio (CR) of Th-232 to U-233, concentration of U-233, fissile and fission products calculation as a function of burnup are presented. The assembly is a critical reactor which makes volumes of coolant and fuel changes possible. In addition, an analytical model of calculation of keff as a function of U-233 and a poison concentration in equilibrium state are presented. One can achieve the criticality of Thorium Breeder Reactor (TBR) for enough high average neutron energy which one can obtain in Fast Breeder Reactor (FBR) only. The maximal value of CR and burnup for case of keff ≥ 1 achieves 1.4 and 360 GWd/MTU, correspondently. The calculations were done with a MCNPX 2.7 code using F2Be, Na and Pb coolants.  相似文献   

20.
This paper describes the simulation work of the Isotope Correlation Experiment (ICE) using the MCNPX Monte Carlo computer code package. The Monte Carlo simulation results are compared with the ICE-Experimental measurements for burnup up to 30 GWD/t. The comparison shows the good capabilities of the MCNPX computer code package for predicting the depletion of the uranium fuel and the buildup of the plutonium isotopes in a PWR thermal reactor. The Monte Carlo simulation results show also good agreements with the experimental data for calculating several long-lived and stable fission products. However, for the americium and curium actinides, it is difficult to judge the predication capabilities for these actinides due to the large uncertainties in the ICE-Experimental data. In the MCNPX numerical simulations, a pin cell model is utilized to simulate the fuel lattice of the nuclear power reactor. Temperature dependent libraries based on JEFF3.1 nuclear data files are utilized for the calculations. In addition, temperature dependent libraries based ENDF/B-VII nuclear data files are utilized and the obtained results are very close to the JEFF3.1 results, except for ∼10% differences in the prediction of the minor actinide isotopes buildup.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号