首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cutting of a nanoscale workpiece is useful in nano testing and fabrication, and novel cutting methods with little gasification of cut nano samples and simple device structures are needed for practical applications. In this paper, an ultrasonic nanowire cutting strategy is demonstrated, in which the linear and elliptical vibration of the tip of a micro cutting tool and the adhesion force between a substrate and nanowire are employed to cut and fix the nanowire, respectively. With this strategy, cutting of individual silver nanowires with a diameter from 50 nm to 400 nm is implemented, in which the vibration velocity amplitude of the micro cutting tool’s root is from 18 to 220 mm/s, and the working frequency is about 96.9 kHz and 45.2 kHz, respectively. The dependency of the minimum cutting velocity and optimum cutting velocity range’s lower limit on the AgNW diameter is experimentally clarified. Also, the cutting principle is analyzed, which can well explain the incision morphology and cutting characteristics.  相似文献   

2.
The development of a tunable ultrasonic vibration-assisted diamond-turning tool is described. The resonance operation method, which formerly served to achieve mechanical motion at ultrasonic frequencies, is now replaced by a newly developed pulse driving technique. The prototype tools allow for vibration frequencies from dc up to 40 kHz and vibration amplitudes from 0 to 10 μm. This paper reviews the design of the new tool system and summarizes the experimental results from diamond turning steel work materials. As in other studies on vibration-assisted machining, the results show that the surface turned with a vibrating tool contains scalloped geometric features superimposed on the tool marks left from conventional turning, resulting in a lower total surface roughness. Tool wear comparisons document advantages from the added vibration, and variations in the carbon content in the resulting chips were also examined.  相似文献   

3.
A long-range, precision fast tool servo (FTS) system was developed that is capable of accurately translating the cutting tool on a diamond turning machine (DTM) with maximum accelerations of 260 m s?2 and bandwidths of up to 140 Hz. The maximum displacement range of the cutting tool is 2 mm. The FTS utilizes a flexure mechanism driven by a voice coil actuator, a custom linear current amplifier and a laser interferometer feedback system. This paper describes the design of the electromechanical system, controller configuration and cutting tests to evaluate the system. Initially, low disturbance rejection and poor command following degraded the surface finish of machined test parts. Several techniques to add damping to the dynamic system were investigated to improve the generated surface finishes. Electromotive damping was applied inside the voice coil actuator, and two different viscoelastic damping materials were applied to the flexure mechanism. A control strategy consisting of linear and non-linear feedforward controllers and a proportional, integral and derivative (PID) feedback controller was implemented to accommodate the changed system dynamics. The workpieces were analyzed using form and surface inspection instruments to evaluate the overall system performance. A cylindrical part with five lobes cut across the face had a surface finish value between 20 and 30 nm Ra.  相似文献   

4.
S. Weidel  U. Engel 《Wear》2009,266(5-6):596-599
In metal-forming processes tribological conditions between tool and workpiece are of greatest importance for process quality and process feasibility. This is even truer for microforming applications, where at least two dimensions of the workpiece are in the sub-millimetre range, due to increasing friction when process dimensions are scaled down. This effect can be explained by the model of open and closed lubricant pockets characterising the workpiece surface and the invariance of topography to scaling. As the number of workpiece asperities contacting the tool is drastically reduced the flattening behaviour of single asperities is of major interest for characterising tribology in microforming processes in more detail. Especially, a topography emerging on top of flattened asperites, the so-called nanotopography and its impact on the friction conditions has to be considered. Modelled asperities represented by pyramids with a base area of 120 μm × 120 μm and a height of 32 μm are flattened with a high-resolution experimental setup which enables in situ observation of the contact area. In-process measurement is complemented by post-process analysing the topography by confocal microscopy and scanning probe microscopy. This paper will show that a nanotopography on top of flattened asperities can emerge under certain geometrical conditions and that it has an impact on the friction conditions in the tool/workpiece interface. The detailed knowledge about the evolution of surface topography is relevant in particular to microforming but also for an improved understanding of tribological phenomena in general.  相似文献   

5.
We have investigated the cutting forces, the tool wear and the surface finish obtained in high speed diamond turning and milling of OFHC copper, brass CuZn39Pb3, aluminum AlMg5, and electroless nickel. In face turning experiments with constant material removal rate the cutting forces were recorded as a function of cutting speed between vc = 150 m/min and 4500 m/min revealing a transition to adiabatic shearing which is supported by FEM simulations of the cutting process. Fly-cutting experiments carried out at low (vc = 380 m/min) and at high cutting speed (vc = 3800 m/min) showed that the rate of abrasive wear of the cutting edge is significantly higher at ordinary cutting speed than at high cutting speed in contrast to the experience made in conventional machining. Furthermore, it was found that the rate of chemically induced tool wear in diamond milling of steel is decreasing with decreasing tool engagement time per revolution. High speed diamond machining may also yield an improved surface roughness which was confirmed by comparing the step heights at grain boundaries obtained in diamond milling of OFHC copper and brass CuZn39Pb3 at low (vc = 100 m/min) and high cutting speed (vc = 2000 m/min). Thus, high speed diamond machining offers several advantages, let alone a major reduction of machining time.  相似文献   

6.
A resin-bonded ultra-fine diamond abrasive polishing tool is fabricated by electrophoretic co-deposition (EPcD), and the processing performance of the tool is evaluated in this study. The dispersion stability of suspensions is characterized by a laser particle size analyzer and settlement ratio. The cathodic EPcD of composite powder is realized by adding Al3+ into the suspension. The sintering temperature of composite coatings is determined by differential thermal analysis/thermogravimetry. The surface morphology of the composite coating is observed under a confocal microscope. Results show that uniform, dense, and smooth coatings with diamond and resin particles distributed homogeneously are obtained from the steel substrate. A large (Φ150 mm) polishing tool with a 20 μm-thick coating is successfully prepared using the above process. A smooth mirror surface of SiC wafer with a nanoscale roughness (4.3 nm) is achieved after processing with the ultra-fine diamond abrasive polishing tool.  相似文献   

7.
In the electrogenerated chemical polishing (EGCP), material removal rate (MRR) is inversely proportional to the processing gap. To polish a workpiece with a large area, high and uniform MRR is necessary, which prefers a small and uniform processing gap. Based on the principle of the hydrostatic support, a novel micro-gap control method is proposed. The method uniformly controls the gap between the electrode and workpiece to a micro level over a large area. A relationship between the gap size and the inlet pressure is derived theoretically and verified experimentally. The proposed method is successfully applied to the polishing of a Cu surface with a diameter of 50 mm. Promising results are obtained that surface roughness and flatness are reduced from average roughness (Ra) 82 nm and peak-to-valley (PV) value 290 nm to Ra 4 nm and PV 120 nm, respectively.  相似文献   

8.
This study presents a novel precise piezoelectric motor capable of operating in either an AC drive mode or DC drive mode. In the AC drive mode, the motor acts as an ultrasonic motor which is driven by two orthogonal mechanical vibration modes to generate elliptical motion at the stator to push the slider into motion. In the DC drive mode, stick-slip friction between the stator and slider is used to drive the motor step-by-step. The experimental results show that the AC drive mode can drive the motor at a high moving speed, while the DC drive mode can simply drive the motor with a nanoscale resolution. In our experiments, a prototype motor is fabricated and its actions are measured. The results demonstrate that in the AC drive mode, the piezoelectric motor can achieve a 106 mm/s speed without a mechanical load and a 34 mm/s speed with 340 g of mechanical load when applying two sine waves with a drive of 11.3 V at 38.5 kHz. Meanwhile, in a DC driving mode, the motor is capable of performing precision positioning with a displacement resolution of 6 nm when driving at 100 Hz.  相似文献   

9.
Elliptical vibration cutting with single-crystalline diamond tools is applied to mirror surface machining of high-alloy steels such as cold work die steels and high-speed tool steels with a hardness of more than 60 HRC. Although practical mirror surface machining of hardened die steels such as Stavax (modified AISI 420) with a hardness of 53 HRC has been realized with the elliptical vibration cutting, lives of single-crystalline diamond tools are not sufficiently long in machining of some high-alloy steels, that may be caused by a large amount of alloy elements. In order to clarify the influence of the alloy elements on the diamond tool damage, the elliptical vibration cutting experiments are conducted on six kinds of high-alloy steels and four kinds of pure metals which are the same as the alloy elements. Mechanical properties of the alloy steels, i.e. difference in hardness between carbides and matrices, and the number of small carbides, are measured, and their influence on the micro-chippings are investigated. The chemical states of the alloy elements in high-alloy steels are analyzed using an X-ray diffraction (XRD) and an electron probe micro analyzer (EPMA), and their influence on the tool wear is discussed. Based on the investigation, a mirror surface machining of DC53, which has a high hardness of 62.2 HRC and the best machinability in the tested high-alloy steels, is demonstrated, and a mirror surface with a roughness of Rt 0.05 μm is obtained successfully.  相似文献   

10.
After finishing the precision conditioning of mono-layer nickel electroplated coarse-grained diamond wheels with 151 μm (D151), 91 μm (D91) and 46 μm (D46) grain size, resp., profile and surface grinding experiments were carried out on a five-axis ultra-precision grinding machine with BK7, SF6 optical glasses and Zerodur glass ceramic. A piezoelectric dynamometer was used to measure the grinding forces, while an atomic force microscopy (AFM), white-light interferometer (WLI)) and scanning electron microscope (SEM) were used to characterize the ground surface quality in terms of micro-topography and subsurface damage. Moreover, the wear mechanics of the coarse-grained diamond wheels were analyzed and the grinding ratio was determined as well, in aiming to evaluate the grinding performance with the conditioned coarse-grained diamond wheels. Finally, the grinding results were compared with that of the fine-grained diamond wheels with regard to the ground specimen surface quality, process forces and wheel wear as a function of stock removal. The experimental results show that the precision conditioned coarse-grained diamond wheels can be applied in ductile mode grinding of optical glasses with high material removal rates, low wheel wear rates and no dressing requirement yielding excellent surface finishes with surface roughness in the nanometer range and subsurface damage in the micrometer range, demonstrating the feasibility and applicability of the newly developed diamond grinding technique for optical glasses.  相似文献   

11.
Micro holes with internal features are widely used as spray holes and cooling holes nowadays, which are usually required to be with high aspect ratio and shape accuracy, as well as good surface quality. An electrochemical machining (ECM) process is presented to machine these micro holes with diameter <200 μm. A quantitative relation between micro-hole diameter and machining parameters including voltage, duty ratio and feedrate is obtained through orthogonal experiments. According to the designed shape of internal features, change rules of machining parameters for varied diameters in different depth are obtained, and then micro holes with internal features are shaped precisely. Taking reverse tapered hole as an example, ECM experiments by varying parameters of voltage, duty ratio and feedrate (called varying voltage machining, varying duty ratio machining and varying feedrate machining, respectively) are carried out. Micro holes with inlet diameter of 178 μm and taper angle of 1.05° are shaped on a 1.0 mm-thick workpiece of 18CrNi8. The deviation of inlet is <3 μm and the taper-angle error is <0.1° in varying voltage machining. The corresponding dimensional accuracy of taper angle is improved by 51% than that of varying duty ratio machining under the same efficiency. The machining efficiency of varying voltage machining is increased by 36% compared to the efficiency in varying feedrate machining. In addition, the micro holes with complex features of funnel shape and bamboo shape are machined.  相似文献   

12.
Pneumatic piston–cylinder actuators are commonly used in industry for a variety of automation and robotics applications. In order to suppress leakage, these actuators comprise seal rings which unfortunately introduce friction and affect the positioning accuracy and output force. This article investigates vibrations of the seal generated by integrated piezo actuators to reduce friction force. For this, two piezoelectric stacks are integrated in the cylinder and used to excite vibration modes. This concept was studied in a compact cylinder pneumatic actuator with a bore diameter of 5 mm and a stroke of 10 mm. Dry friction measurement shows a 52% reduction from the original friction force at a driving frequency of 18.29 kHz and vibration amplitude of 0.05 μm. In the wet friction experiments, the friction force can be reduced by 54% from the original wet friction with vibrations at amplitude of 0.04 μm.  相似文献   

13.
Surface roughness and cutting force are two key measures that describe machined surface integrity and power requirement evaluation, respectively. This investigation presents the effect of melt treatment with addition of bismuth and antimony on machinability when turning Al–11%Si–2%Cu alloy. The experiments are carried out under oblique dry cutting conditions using a PVD TIN-coated insert at three cutting speeds of 70, 130 and 250 m/min, feed rates of 0.05, 0.1, 0.15 mm/rev, and 0.05 mm constant depth of cut. It was found that the Bi-containing workpiece possess the best surface roughness value and lowest cutting force due to formation of pure Bi which plays an important role as a lubricant in turning process, while Sb-containing workpiece produced the highest cutting force and highest surface roughness value. Additionally, change of silicon morphology from flake-like to lamellar structure changed value of cutting force and surface roughness during turning.  相似文献   

14.
In this paper, a novel ultrasonic vibration assisted grinding (UVAG) technique was presented for machining hard and brittle linear micro-structured surfaces. The kinematics of the UVAG for micro-structures was first analyzed by considering both the vibration trace and the topological features on the machined surface. Then, the influences of the ultrasonic vibration parameters and the tilt angle on the ground quality of micro-structured surfaces were investigated. The experimental results indicate that the introduction of ultrasonic vibration is able to improve the surface quality (The roughness SRa was reduced to 78 nm from 136 nm), especially in guaranteeing the edge sharpness of micro-structures. By increasing the tilt angle, the surface roughness can be further reduced to 56 nm for a 59% improvement in total. By using the preferred UVAG parameters realized by orthogonal experiments, a micro cylinder array with surface roughness of less than 50 nm and edge radius of less than 1 μm was fabricated. The primary and secondary sequence of the grinding parameters obtained by the orthogonal experiments are as follows: feed rate, tilt angle of workpiece, depth of grinding, vibration frequency and amplitude. The spindle speed in the range of 1000 rpm–3000 rpm does not significantly affect the machined micro-structured surface roughness. Finally, more micro-structures including a micro V-groove array and a micro pyramid array were machined on binderless WC as well as SiC ceramic by means of the UVAG technique. The edge radius on the V-grooves and pyramids are both less than 1 μm, indicating the feasibility of UVAG in machining hard and brittle micro-structured surfaces for an improved surface quality.  相似文献   

15.
Karam Kang 《Wear》2009,266(9-10):1044-1049
Aluminium can manufacturing uses a wide range of punch sleeve surface roughness and textures. The ironing die and the punch tooling both can vary in the roughness from 0.04 μm to 0.4 μm Ra during the can forming process. This, together with the roughness of the incoming can body sheet (from 0.3 μm to 0.6 μm Ra) creates a wide range of tool/metal interface coefficients of friction. Ironing dies become rougher and have to be replaced frequently once they lose their shape. Punches maintain a consistent roughness for periods of a week to a month and any surface wear is compensated for with die changes. The initial die and punch surface finish adopted by a manufacturing unit determines the long time plant productivity and punch life. A higher friction on the punch side, compared to the die side, is the preferred manufacturing operating condition. Departures from the preferred condition with ground, polished, cross-hatch and media textured punches are examined. Plants that prefer polished carbide punches over cross-hatched must have their lubrication and coolant parameters controlled within a very narrow operating window. A larger operating window and better performance is achieved with the cross-hatch and micro-textured punches having a Ra less than half that of the can body sheet. Above all, a random isotropic texture is identified as the ideal punch sleeve surface texture and the best performer for aluminium can manufacture.  相似文献   

16.
The fixed abrasive lapping process is presented to investigate its ability and accuracy in machining of interdigitated micro-channels on bipolar plates that are used in the proton exchange membrane fuel cell. A kinematical equation to describing the relative movement between the fixed abrasive lapping plate and workpiece is developed and used to numerically simulate the trajectories of a single diamond abrasive and fixed diamond abrasives with 17 different arraying forms, respectively. It is shown that the lapping trajectory can be superposed periodically when the rotation ratio is a rational number. By assessing the uniformity of lapping trajectories and opening ratio of the bipolar plate the optimized rotation ratio is obtained which is 1:1, and the best arraying form of the fixed diamond abrasives on the lapping plate has been obtained as well that is the arraying form of C4. Then, a set of fixed abrasive lapping tests were conducted to explore its ability in machining of interdigitated micro-channels on bipolar plates. It is found that larger material removal rate can be achieved by employing bigger lapping pressure and higher rotation speed for both copper and stainless steel samples considered in this study. The maximum cell power density is found to be about 165 mW cm−2 by testing the performance of a single micro fuel cell with a bipolar plate characterized by interdigitated micro-channels that shows a good cell performance.  相似文献   

17.
Porous tungsten is conventionally machined with the aid of a plastic infiltrant to achieve acceptable surface finish. For dispenser cathode application, both high surface porosity and low surface roughness are necessary. Cryogenic machining has already been demonstrated to be capable of eliminating the need for plastic infiltration by greatly reducing smearing of pores. In order to address the problem of undesirable brittle fracture during cryogenic machining, the importance of uncut chip geometry is investigated. The value of critical chip thickness, beyond which brittle fracture occurs, is found to be closely linked to the microstructure of the workpiece material. While machining with very low uncut chip thickness leads to ploughing and spalling of the workpiece surface, ductile mode machining of porous tungsten with cryogenic cooling is found to yield excellent surface quality. When the maximum uncut chip thickness is approximately equal to the average ligament diameter of 80% density porous tungsten (d  8–9 μm), ductile mode machining is possible under both dry and cryogenic conditions. Changes in shock compaction behavior of the workpiece material, leading to altered physical properties, is hypothesized to be the underlying mechanism of ductile mode machining of porous tungsten.  相似文献   

18.
Ceramic cutting tool inserts are prone to premature failure by chipping instead of gradual wear due to their low impact toughness. Thus, in-process detection of failure of ceramic tools is important to prevent workpiece surface deterioration. The objective of this study is to develop a method of detection of the onset of chipping in ceramic cutting tool inserts during dry finish turning from the workpiece profile signature. The profile of the workpiece surface opposite the cutting side was captured using an 18-MP DSLR camera at a shutter speed of 0.25 ms during the turning of AISI01 oil-hardening tool steel. The edge profile was extracted to sub-pixel accuracy from the 2-D image of the workpiece surface using the invariant moment method. The effect of chipping in the ceramic insert on the surface profile signature of the workpiece was investigated using the fast Fourier transform (FFT) and continuous wavelet transform (CWT). The results show that the stochastic behavior of the cutting process after tool chipping manifest as sharp increase in the amplitude of spatial frequencies below the fundamental feed frequency. The proposed sub-window FFT method is effective in resolving the time resolution by detecting tool chipping at cutting time duration of around 17.13 s. Compared to the sub-window FFT method the CWT method is able to detect the exact onset of chipping in the cutting tool insert.  相似文献   

19.
In this paper, we describe curved hole drilling via the reflection of a laser beam off the sidewall of the drilled hole. A slightly offset laser beam forms a tilted surface at the bottom of the hole, controlling the angle of curvature. An ultraviolet laser beam operating at a wavelength of 266 nm was used. To visualize the hole formation process, borosilicate glass was used as the laser workpiece. This method was able to drill a curved hole with an average angle of ∼3° with curvature beginning at a depth of 400–600 μm. A curved hole with a diameter of <50 μm was achieved. A branched hole was also demonstrated by using the reflection of the tilted sidewall. The curved hole formation process was recorded with a high speed camera. Once the ablated sidewall reached a certain depth, drilling ceased as the laser energy fell below the ablation threshold. Ultimately, judicious selection of an appropriate laser fluence and sidewall angle allow the formation of curved holes.  相似文献   

20.
In this study, for active control of flow, the effect of the Dielectric Barrier Discharge (DBD) plasma actuator consisting of intermittent electrodes in the lengthwise direction of circular cylinder is investigated. The experiments were conducted in the wind tunnel at the Reynolds numbers between 6000 and 12,500. In three different cases, the lengths of the actuators and gaps between them are chosen as 20 mm, 25 mm, and 50 mm, respectively. The applied voltage is in the range of 4.5−7.5 kVpp and the constantly applied frequency is 3.5 kHz for producing the plasma. By using the equally placed DBD plasma actuators for the circular cylinder, 2-dimensional flow structure in the wake region is converted into 3-dimensional flow structure that leads to reduce in the mean and fluctuating forces acting on the cylinder. The wake region is narrower than the plain cylinder at the middle point of the electrode spanwise position and the width of the wake region increases at the end point of the electrode spanwise position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号