首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用基于选择性电溶法的再生超细WC粉末为原料,制备WC-10Co和WC-10Co-0.06La_2O_3硬质合金,研究原料中的杂质Ti,Ta和V在烧结过程中的作用行为。结果表明,杂质Ti,Ta和V同步迁移至合金烧结体表面,形成WTi(Ta,V)C_2富集相;合金中微量稀土La可促进Ti的表面迁移。Ti如果不是以固溶体型稳定化合物的形式添加,容易导致硬质合金中出现Co3W3C脱碳相和板状WC晶粒的形成。硬质合金微观组织结构的均匀性与Ti在合金中分布的均匀性密切相关。  相似文献   

2.
研究采用传统硬质合金生产工艺制备了超细晶WC-1Cr3C2-12Co硬质合金,用场发射扫描电镜观察了1130~1360℃真空烧结合金的微观组织结构,定量分析了合金中的残余孔隙、WC硬质相的形貌、晶粒尺寸及其分布随烧结温度的变化规律,对添加的Cr3C2晶粒长大抑制剂和稀土的存在形态及其对Co黏结相分布的影响进行了分析评价。  相似文献   

3.
采用费氏粒度分别为2.5μm和1.0μm的WC粉和Co粉为原料粉末,以ZrO_2(3Y)、CeO_2为添加剂,制备WC-6%Co硬质合金试样,研究了不同添加剂对WC-6%Co硬质合金组织和性能的影响。结果表明,ZrO_2(3Y)呈球形弥散分布于粘结相中,提高了硬质合金的抗弯强度,但对WC晶粒度无明显影响;CeO_2能细化WC晶粒,减小硬质合金的孔隙,使硬质合金组织分布均匀,抗弯强度提高。  相似文献   

4.
研究了稀土Y2O3对WC-10Co硬质合金晶粒尺寸、矫顽力的影响,对比了Y2O3含量0.10%(质量分数,下同)和0.30%硬质合金的摩擦磨损性能。结果表明:微量Y2O3能细化WC晶粒,有效改善合金的硬度,影响硬质合金的磁性能。低于0.15%时,WC-10Co合金晶粒尺寸随着Y2O3增加而明显细化,硬度显著增加;Y2O3含量达到0.2%以上,WC-10Co合金的晶粒尺寸基本稳定,硬度也变化不大。在相同条件下,细晶粒0.30%Y2O3的WC-10Co硬质合金比0.10%Y2O3的WC-10Co硬质合金的摩擦因数稍高,但磨损体积损失低于0.10%Y2O3合金。  相似文献   

5.
《稀土》2015,(6)
以白钨为原料,采用常规硬质合金烧结工艺制备了稀土WC-6%Co硬质合金,通过XRD、SEM以及性能测试等方法研究了稀土对合金组织结构、磁性能及力学性能的影响。结果表明,添加0.12%(质量分数)Ce或Y有利于Co相分布均匀且提高了α-Co相的比例,Ce-YG6和Y-YG6合金钴磁分别达到了5.28%和5.35%;YG6合金晶粒得到细化,Y-YG6合金平均晶粒尺寸为0.92μm;Y-YG6合金的硬度、抗弯强度和断裂韧性分别达到了HRA92.5、2610 MPa和13.26 MPa·m~(1/2),分别提高了1.65%、50.61%和11.24%;稀土YG6硬质合金的矫顽磁力最大增幅达24.14%;稀土与合金中的Ca、Si、S和O等杂质元素反应形成的化合物起到净化晶界和相界的作用;添加稀土后,白钨制备的YG6合金性能优于黑钨制备的YG6合金性能。  相似文献   

6.
采用真空烧结工艺制备了WC-10Co硬质合金。研究了Y_2O_3添加量对WC-10Co硬质合金晶粒尺寸、力学性能、磁性能的影响。结果表明,添加Y_2O_3能使合金晶粒细化且颗粒尺寸更加均匀;Y_2O_3的加入可提高合金力学性能,当Y_2O_3添加量为0.4%时合金的力学性能最佳,合金硬度为94.5 HRA,抗弯强度为2 250 MPa;添加Y_2O_3能提升硬质合金的钴磁、矫顽磁力。  相似文献   

7.
稀土Y,Ce及其添加方式对硬质合金显微结构与性能的影响   总被引:1,自引:0,他引:1  
采用在还原碳化法制备WC粉末前添加稀土氧化物Y2O3或CeO2,以及在WC与Co粉末混合球磨时加入该稀土氧化物两种不同的方式,在WC-10Co硬质合金中添加稀土元素,利用金相显微镜和扫描电镜观察稀土硬质合金的组织形貌与显微结构,采用X射线衍射仪(XRD)和电子探针对合金的相成分与微区成分进行分析,并测试合金的硬度、断裂韧性与磁性能,研究稀土及其添加方式对硬质合金结构与性能的影响。结果表明,无论以何种方式添加Y2O3或CeO2,最终制备的硬质合金中稀土元素都与氧共存,并以球形颗粒的形式弥散分布于硬质合金的钴粘结相中。稀土硬质合金中WC晶粒球化趋势明显,WC/WC的邻接度由0.6降低至0.39,断裂韧性由12.8 MPa?m1/2提高至16.7 MPa?m1/2。球形、弥散分布的稀土氧化物颗粒会破坏合金结构的连续性,导致合金强度降低。  相似文献   

8.
WC-(Co-Al)硬质合金的研究   总被引:4,自引:1,他引:4  
研究采用反应烧结制备以Co3 Al代Co作为粘结金属的硬质合金技术。对制得的硬质合金进行了组织结构的观察及性能测定。结果表明 ,铝的加入有助于烧结过程中WC晶粒的细化和均匀化 ,制得了WC晶粒均匀的超细硬质合金。与相同粘结剂含量的钴粘结硬质合金相比 ,在耐腐蚀和高温抗氧化性方面 ,Co Al硬质合金表现出明显的优异性能。研究发现 ,在烧结中由于发生Co Al的激烈化合反应而导致孔隙的形成。采用低压等静压烧结或烧结后进行低压等静压处理可降低孔隙度提高合金的力学性能  相似文献   

9.
加混合稀土WC—8Co合金的组织和性能   总被引:4,自引:0,他引:4  
探讨了添加超细混合稀土氧化物微粉对WC-8Co硬质合金组织结构和性能的优化机理.结果表明,混合稀土氧化物提高WC-8CO合金强韧性的原因,不仅是由于WC晶粒尺寸的细化、不连续长大的粗晶WC的消除和立方钻相含量的提高,还与合金制品宏观应力的增加有关。  相似文献   

10.
通过向WC-10Co混合粉末中加入2%和4%质量分数的η相粉末和等摩尔量的炭黑,经过传统的粉末冶金工艺制备含板状WC晶粒的硬质合金,研究η相碳化反应过程以及η相粉末加入量、η相粉末在基体中球磨时间对合金组织与性能的影响。结果表明:加入少量的η相粉末及等摩尔量的工业炭黑后,WC-10Co中的WC晶粒出现了明显的板状特征,随η相粉末加入量增多,板状WC晶粒数量增多;在总球磨时间不变的前提下,随η相粉末在基体中球磨时间增加,板状WC晶粒的分布越来越均匀。所得到的板状WC晶粒是η相在950~1 200℃之间与WC-Co基体中扩散来的C原子碳化反应后生成不同形貌的WC孪晶得来的,且碳化速度是影响WC孪晶形貌的关键因素。相对于相同Co含量的传统硬质合金,板状WC晶粒均匀分布的硬质合金密度基本保持不变,硬度提高0.7%,强度提高6%,断裂韧性提高17%。  相似文献   

11.
以碳质量分数为理论含碳量的WC为硬质相,在1450℃下通过气压烧结制备WC-20Fe,WC-20Ni和WC-20Co硬质合金,通过X射线衍射、扫描电子显微镜、电子探针和力学性能测试研究了不同金属粘结相对烧结硬质合金微观结构和力学性能的影响。结果表明:WC-20Fe合金出现η脱碳相(Fe3W3C),W在粘结相Fe中的溶解度仅有1.915%(质量分数),WC晶粒尺寸最小。WC-20Ni合金渗碳出现石墨相(C),W在粘结相Ni中的溶解度达到10.753%(质量分数),WC晶粒尺寸最大,合金硬度最小。WC-20Co合金为正常两相区组织(WC+γ),具有最高抗弯强度2720 MPa和最大硬度934.41 kg·mm-2。所有合金断裂模式均为脆性断裂和沿晶断裂,WC-20Co合金断口出现明显的粘结相撕裂。  相似文献   

12.
采用粉末冶金法制备WC-30Co,WC-30Co-1VC和WC-30Co-1Cr3C2硬质合金(成分含量为质量分数,下同),分别采用随炉冷却和水淬2种方式进行冷却,采用电子探针分析技术和高分辨率透射电镜,分析合金的Co相成分以及WC/Co界面结构,研究V和Cr元素对WC-30Co合金的Co粘结相成分与WC/Co界面结构的影响。结果表明:VC抑制晶粒长大的效果比Cr3C2更明显;在1 280~1 360℃下烧结时,V和Cr的添加可提高W在Co相中的固溶量,而在1 400℃烧结时,对W在Co相中的固溶量影响不大。水淬态合金的WC/Co界面发现层状的含Cr和V的析出相,且含V析出相的厚度明显大于含Cr析出相的厚度;可以推断界面析出相是在烧结过程而并非冷却过程中形成的;析出相的形成是Cr3C2和VC抑制WC晶粒长大的重要原因。  相似文献   

13.
基于Image J软件的硬质合金显微组织参数化定量分析   总被引:1,自引:0,他引:1  
基于体视学原理和硬质合金显微组织特征,结合现代计算机技术,提出一种应用于WC+β(β为粘结相)2相组织的硬质合金显微组织体视学参量定量化表征的方法。利用Image J软件对硬质合金扫描电镜图像进行处理,实现对合金中WC硬质相和粘结相的体积分数、WC晶粒尺寸和分布、WC晶粒形状因子、WC邻接度以及β相平均自由程的参数化定量分析。以WC-8.5Co合金为例,展示合金显微组织参数的定量分析和表征过程。  相似文献   

14.
采用高能球磨法制备出了用于生产纳米晶稀土硬质合金的原料粉末。通过XRD、SEM和DTA等分析检测手段,研究了该纳米WC—Co—RE粉末的结构、形貌和相的变化。结果表明:高能球磨45h,可获得晶粒尺寸约为8.45mm的WC—Co—RE粉末;微量稀土的加入,有利于粉末晶粒的细化;在25~45h范围内,随着高能球磨时间的延长,粉末晶粒尺寸的减小趋势符合直线变化规律,且掺稀土粉末的晶粒尺寸比未掺稀土粉末的晶粒尺寸减小一半;高能球磨25h,粉末中Co相的X射线衍射峰消失。高能球磨ⅥE—Co—RE粉末的DTA曲线在597℃出现了一个尖锐的放热峰。高能球磨WC—Co—RE粉末固结之后,所制得合金的晶粒细小且机械性能较好。  相似文献   

15.
以锌熔法回收的WC-Co粉末为原料,采用常规硬质合金生产工艺制备添加不同含量Y_2O_3和Nd_2O_3的再生YG8硬质合金,并对其进行密度、硬度、抗弯强度以及断口形貌检测分析,探讨了稀土氧化物对硬质合金的强化机理。结果表明,添加Y_2O_3的硬质合金钴磁值升高,添加Nd_2O_3的钴磁值降低;稀土氧化物Y_2O_3和Nd_2O_3对硬质合金密度、硬度影响均不大,添加量为0.5%时,硬度达到最大,分别为89.5、89.3 HRA;抗弯强度随着稀土氧化物含量的增加明显提高,添加0.7%Y_2O_3和0.7%Nd_2O_3的硬质合金抗弯强度分别达2 200、2 102.8 MPa,比未添加稀土氧化物的再生YG8硬质合金提高了22.2%和16.8%;添加Y_2O_3的硬质合金细小晶粒的比例更大,粗大WC晶粒得到更大程度的细化,且分布更加均匀,韧窝状形貌更加明显,分布更加集中。  相似文献   

16.
采用粒度为0 81μm的超细WC粉和粒度为1 35μm的Co粉,通过添加Cr3C2和VC作为晶粒长大抑制剂,采用热压(HP)烧结工艺制备了平均晶粒度小于0 8μm的WC-10Co硬质合金,检测了合金的显微硬度和显微组织。研究结果表明:随着烧结温度和保温时间的增加,WC-10Co硬质合金试样的显微硬度明显升高;添加晶粒长大抑制剂有效地抑制了晶粒的长大,明显提高了WC-10Co硬质合金的显微硬度;其中采用0 8Cr3C2+0 4VC晶粒长大抑制剂的样品显微硬度最高,达到22560MPa(2256kgf/mm2)。根据本实验研究结果,晶粒长大抑制剂对WC-10Co硬质合金作用效果的顺序为:(Cr3C2+VC)>Cr3C2>VC。  相似文献   

17.
压力对放电等离子烧结硬质合金性能的影响   总被引:2,自引:0,他引:2  
采用放电等离子技术(SPS)烧结WC-12Co硬质合金.主要研究了SPS烧结过程中压力对WC-12Co硬质合金致密化、显微组织及性能的影响,并探讨了压力对致密化和WC晶粒长大的影响机制.结果表明,提高SPS烧结压力提高了WC-12Co硬质合金的密度但导致了wC晶粒的长大.在较低的烧结温度下(1100℃)或较短的保温时间内(3 min),烧结压力对密度的影响较为显著.在较高的烧结温度(1150℃)时,烧结压力的提高导致合金中WC晶粒的明显长大.烧结压力对SPS烧结WC-12Co硬质合金力学性能的影响是通过对密度和WC晶粒尺寸的影响而起作用的.  相似文献   

18.
采用传统的低压烧结工艺制备了WC-6.1Co超粗硬质合金,并通过光学金相观察和力学、物理性能检测研究了烧结温度对该硬质合金的微观结构以及性能的影响规律。结果表明:低压烧结制备的合金中WC晶粒度随烧结温度的升高而增大,WC晶粒孔隙始终较少,且棱角较鲜明,组织发育完整。此外,虽然磁力和导热系数随烧结温度的升高分别单调下降和增加,但烧结温度为1430℃时,WC-6.1Co超粗硬质合金的强度和硬度较高,具有最优的综合性能。  相似文献   

19.
微波多模腔快速烧结WC-8%Co硬质合金   总被引:4,自引:1,他引:4  
采用多模腔微波烧结工艺制备了WC-8%Co硬质合金,烧结周期为1~1.5h,研究了微波烧结工艺对合金组织结构与性能的影响。结果表明:微波烧结WC-8%Co硬质合金所需时间短,在1400℃的烧结温度下保温0min时密度就能达到14.71g/cm3,HRA可达90.3,烧结样品的显微组织结构均匀,样品中心和边缘区域WC晶粒尺寸分布一致,没有发现显著差异,随着烧结保温时间的增加和烧结温度的提高WC晶粒尺寸长大不明显。  相似文献   

20.
本文系统研究了添加不同配比的VC、Cr3C2、(Ta、Nb)C、TiC晶粒长大抑制剂对细晶WC-6Co硬质合金显微组织和性能的影响.研究结果表明,添加0.2%VC或0.2%VC与Cr3C2、(Ta、Nb)C、TiC抑制剂结合均可不同程度地细化合金晶粒,但由于这些抑制剂对Co相润湿性、流动性影响不同,导致合金的孔隙度也有所不同.在本试验条件下,在WC-6Co中加入0.2%VC对细化合金晶粒和降低孔隙度的效果最佳,使晶粒细化到0.5μm左右,因而其合金综合性能最好,洛氏硬度达93.1、抗弯强度1605 MPa、冲击韧性2.45 J/cm2、断裂韧性13.71 MPa ·m1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号