首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Their resistance to electro-chemical corrosion, high strength-to-weight ratio, larger creep strain, fatigue resistance, and nonmagnetic and nonmetallic properties make carbon fiber reinforced polymer (CFRP) composites a viable alternative to bonding of steel plates in repair and rehabilitation of reinforced concrete structures. The objective of this investigation is to study the effectiveness of externally bonded CFRP sheets or carbon fiber fabric in increasing the flexural strength of concrete beams. Four-point bending flexural tests were conducted up to failure on nine concrete beams strengthened with different layouts of CFRP sheets and carbon fiber fabric and on three beams with different layouts of anchored CFRP sheets. An analytical procedure, based on compatibility of deformations and equilibrium of forces, was presented to predict the flexural behavior of beams strengthened with CFRP sheets and carbon fiber fabric. Comparisons were made between the test results and the analytical calculations. The flexural strength was increased up to 58% on concrete beams strengthened with anchored CFRP sheets.  相似文献   

2.
Experiments were conducted to study the effect of using epoxy mortar patch end anchorages on the flexural behavior of reinforced concrete beams strengthened with carbon fiber-reinforced polymer (CFRP) sheets. More specifically, the effect of the end anchorage on strength, deflection, flexural strain, and interfacial shear stress was examined. The test results show that premature debonding failure of reinforced concrete beams strengthened with CFRP sheet can be delayed or prevented by using epoxy mortar patch end anchorages. A modified analytical procedure for evaluating the flexural capacity of reinforced concrete beams strengthened with CFRP sheets and epoxy mortar end anchorage is developed and provides a good prediction of test results.  相似文献   

3.
A technique for strengthening damaged concrete beams using prestressed carbon fiber reinforced polymer (CFRP) sheets was developed at Queen’s University and the Royal Military College of Canada. As part of this study, an anchorage system was developed to directly prestress the CFRP sheets by jacking and reacting against the strengthened concrete beam itself. The feasibility and effectiveness of using bonded prestressed CFRP sheets to strengthen precracked concrete beams at both room (+22°C,+72°F) and low (?28°C,?20°F) temperatures have been investigated experimentally. Materials and prestress changes due to temperature variations that would affect and cause changes in flexural behavior were studied. The strengthened beams showed significant increases in flexural stiffness and ultimate capacity as compared to the control-unstrengthened beams. The flexural behavior of the strengthened beams was not adversely affected by short-term exposure to reduced temperature (?28°C,?20°F). In addition to the experimental investigation, analytical models were developed to predict the overall flexural behavior of the strengthened beams during prestressing of the CFRP sheets and under external loading at both room and low temperatures. The model accurately predicted the flexural beam behavior. Improved serviceability behavior and higher strength were predicted for beams strengthened with the bonded prestressed CFRP sheets.  相似文献   

4.
This paper presents the results of a test program for shear strengthening characteristics of continuous unidirectional flexible carbon-fiber polymer sheets bonded to reinforced concrete (RC) beams. A total of eight 150?mm×200?mm×2,600?mm concrete beams were tested. Various sheet configurations and layouts were studied to determine their effects on ultimate shear strength of the beams. From the tests, it was found that the externally adhesive bonded flexible carbon-fiber sheets are effective in strengthening RC beams in shear. Further, it was observed that the strength increases with the number of sheet layers and the depth of sheets across the beam section. Among the various schemes of wrapping studied, vertical U-wrap of sheet provided the most effective strengthening for concrete beam. Beam strengthened using this scheme showed 119% increase in shear capacity as compared to the control beam without any strengthening. Two prediction models available in literature for computing the shear contribution of carbon-fiber tow sheets to the shear capacity of fiber reinforced polymers bonded beams were compared with the experimental results.  相似文献   

5.
Deterioration of concrete structures caused by corrosion of reinforcing steel, aging, and weathering is a major problem in harsh environments such as coastal areas and cold regions. In addition, a hot environment, such as in the Arabian Gulf, is recognized as one of the most severe and aggressive environments that affects concrete durability. The purpose of this study is to investigate the effectiveness of strengthening plain concrete cylinders, subjected to extreme temperature variations, by wrapping with two layers of unidirectional carbon fiber-reinforced polymer (CFRP) sheets. Thirty-six plain concrete cylinders (150×300?mm) were tested. Nine specimens served as unstrengthened controls and the remaining cylinders were strengthened with two layers of CFRP sheets. Cylinders were subjected to high temperatures (45°C), to heating and cooling cycles (23 to 45°C), and to prolonged heat exposure (45°C). Some of the cylinders that were subjected to heating and cooling, were later subjected to freezing and thawing cycles, while others were submerged in fresh water or salt water. The specimens were loaded to failure under uniaxial compressive load and the axial and lateral deformations were monitored. High temperature exposure was not found to decrease the strength of the wrapped concrete cylinders.  相似文献   

6.
When strengthening concrete members with fiber-reinforced plastic (FRP) materials the strengthening is, typically, undertaken to carry live load. This live load is assumed to remove itself from the strengthened member in the event of a fire. Thus, the fire performance of the FRP is not important. However, if the strengthening system was designed such that the FRP took some of the dead load, then the performance in fire would become important. In this series of tests, 24 reinforced concrete beams were cast. They were divided into eight sets of three. The sets were split into fire tested and control. In the control group were an unstrengthened control set, a set strengthened with bonded carbon FRP (CFRP) plates, and a set with bonded CFRP plates with bolted anchorages. In the fire-tested group were an unstrengthened control set, a set strengthened with bonded CFRP plates, a set with bonded CFRP plates with bolted anchorages, a set strengthened with bonded CFRP plates and a cementitous fire protection system, and a set with bonded CFRP plates with bolted anchorages and a cementitous fire protection system. The unloaded beams were then subjected to a cellulosic fire in a furnace. The adhesive on the unprotected beams was destroyed by the fire, as was the resin in the CFRP plate. On the strengthened beams with a cementitous fire protection system the adhesive was destroyed by the fire but the resin in the CFRP plate was undamaged. All the beams were tested in four-point bending to determine their load capacity and stiffness. Of the non-fire-tested beams the control beams were weakest and the strengthened beams were stronger and stiffer, there being no significant difference between the bolted and nonbolted beams. The fire-tested beams were load tested postfire exposure. Of the fire-tested beams the control beams had the same properties as the non-fire-tested control beams. The unbolted beams had the same strength regardless of fire protection. One of the bolted beams with fire protection was stronger than those without fire protection but not as strong as the nonfire-tested beams. It can be concluded that the strengthening system in the unprotected beams was destroyed in the fire test. Where fire protection was provided this protected the resin in the CFRP plate but not the adhesive bonding the plate to the beams. Bolts helped to keep the plate attached to the beam but did not provide as good a connection as the adhesive.  相似文献   

7.
This paper investigates the flexure of prestressed concrete beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) sheets, focusing on ductility and cracking behavior. Structural ductility of a beam strengthened with CFRP sheets is critical, considering the abrupt and brittle failure of CFRP sheets themselves. Cracking may also affect serviceability of a strengthened beam, and may be especially important for durability. Midscale prestressed concrete beams (L = 3.6?m) are constructed and a significant loss of prestress is simulated by reducing the reinforcement ratio to observe the strengthening effects. A nonlinear iterative analytical model, including tension of concrete, is developed and a nonlinear finite-element analysis is conducted to predict the flexural behavior of tested beams. The prestressed CFRP sheets result in less localized damage in the strengthened beam and the level of the prestress in the sheets significantly contributes to the ductility and cracking behavior of the strengthened beams. Consequently, the recommended level of prestress to the CFRP sheets is 20% of the ultimate design strain with adequate anchorages.  相似文献   

8.
This paper presents the results of an experimental study designed to investigate the viability of using externally bonded carbon-fiber-reinforced polymer (CFRP) laminates to extend the service life of corroded reinforced concrete (RC) beams. A total of 14 beams, 152×254×3,200?mm each, were tested. Three beams were not corroded; two of them were strengthened by CFRP laminates, while one specimen was kept as a virgin. The remaining 11 beams were subjected to different levels of corrosion damage up to a 31% steel mass loss using an impressed current technique. Six of the corroded beams were repaired with CFRP laminates, whereas the remaining five beams were not repaired. Eventually, all specimens were tested to failure under four-point bending. Corrosion of the steel reinforcement significantly reduced the load-carrying capacity of RC beams. At all levels of corrosion damage, CFRP repair increased the ultimate strengths of the corroded beams to levels higher than the strength of the virgin beam but significantly reduced the deflection capacity.  相似文献   

9.
This paper presents a study on the flexural behavior of two-way reinforced concrete slabs externally strengthened with prestressed or nonprestressed carbon fiber-reinforced polymer (CFRP) sheets. Four large-scale flat plate slabs (3,000?mm×3,000?mm×90?mm) are tested and a nonlinear three-dimensional finite-element analysis is conducted to predict the flexural behaviors of the tested slabs, including the load-deflection response, strain distribution, crack propagation, and crack mouth opening displacement. An increase in the load-carrying capacity of 25 and 72% is achieved for the slabs strengthened with nonprestressed and prestressed CFRP sheets, respectively, in comparison to the unstrengthened slab. A reduction of the deflections up to 32% in service is noted for the strengthened slabs. The unstrengthened slab shows very ductile behavior, whereas, progressive failure is observed for the strengthened slabs, exhibiting pseudoductility in postpeak behavior. Stress redistribution between the internal and external reinforcement is significant in the slab strengthened with prestressed CFRP sheets.  相似文献   

10.
Extensive testing has shown that externally bonded carbon fiber reinforced polymer (CFRP) laminates are particularly suited for improving the short-term behavior of deficient reinforced concrete beams. Accelerated fatigue tests conducted to date confirm that fatigue response is also improved. This paper describes an analytical model for simulating the static response and accelerated fatigue behavior of reinforced concrete beams strengthened with CFRP laminates. Static and fatigue calculations are carried out using a fiber section model that accounts for the nonlinear time-dependent behavior of concrete, steel yielding, and rupture of CFRP laminates. Analysis results are compared with experimental data from two sets of accelerated fatigue tests on CFRP strengthened beams and show good agreement. Cyclic fatigue causes a time-dependent redistribution of stresses, which leads to a mild increase in steel and CFRP laminate stresses as fatigue life is exhausted. Based on the findings, design considerations are suggested for the repair and∕or strengthening of reinforced concrete beams using CFRP laminates.  相似文献   

11.
The results of an experimental and analytical investigation of shear strengthening of reinforced concrete (RC) beams with externally bonded (EB) fiber-reinforced polymer (FRP) strips and sheets are presented, with emphasis on the effect of the strip-width-to-strip-spacing ratio on the contribution of FRP (Vf). In all, 14 tests were performed on 4,520-mm-long T-beams. RC beams strengthened in shear using carbon FRP (CFRP) strips with different width-to-spacing ratios were considered, and their performance was investigated. In addition, these results are compared with those obtained for RC beams strengthened with various numbers of layers of continuous CFRP sheet. Moreover, various existing equations that express the effect of FRP strip width and concrete-member width and that have been proposed based on single or double FRP-to-concrete direct pullout tests are checked for RC beams strengthened in shear with CFRP strips. The objectives of this study are to investigate the following: (1)?the effectiveness of EB discontinuous FRP sheets (FRP strips) compared with that of EB continuous FRP sheets; (2)?the optimum strip-width-to-strip-spacing ratio for FRP (i.e., the optimum FRP rigidity); (3)?the effect of FRP strip location with respect to internal transverse-steel location; (4)?the effect of FRP strip width; and (5)?the effect of internal transverse-steel reinforcement on the CFRP shear contribution.  相似文献   

12.
Steel-reinforced polymer (SRP) composite materials are very attractive due to their low weight and high strength. The ease of installation which significantly reduces repair time and expense is another major advantage. One of the main disadvantages of SRP materials is that the matrices used for their fabrication are typically organic and thus they are susceptible to fire. In this study, a newly developed retrofit system is being used. It consists of high strength steel fibers impregnated in a fireproof inorganic matrix. The objective of this study is to examine the effects of this hybrid rehabilitation system on the fatigue performance of strengthened reinforced concrete beams. Sixteen 100?mm×150?mm×1200?mm reinforced concrete beams with enough transverse reinforcement to avoid shear failure were used in this study. Nine beams were strengthened with steel fiber sheets on their tension faces. The results from the present study indicate that the fatigue life of reinforced concrete beams, subjected to the same cycling load, can be significantly extended using externally bonded sheets. A rather important finding is that although the strengthening system increases the fatigue life of the beams, the failure mechanism remains the same in both strengthened and nonstrengthened beams. Thus, it is possible to predict the fatigue life of a cyclically loaded beam using existing fatigue models. Furthermore, no delamination failures were observed due to fatigue loading.  相似文献   

13.
This paper presents the flexural behavior of reinforced concrete beams strengthened with prestressed carbon fiber-reinforced polymer (CFRP) sheets using nonmetallic anchor systems. The developed nonmetallic anchor systems replace the permanent steel anchorage. Nine doubly reinforced concrete beams are tested with various types of nonmetallic anchor systems such as nonanchored U-wraps, mechanically anchored U-wraps, and CFRP sheet-anchored U-wraps. The flexural behavior of the tested beams, including detailed failure modes of each nonmetallic anchor system, is investigated. The study shows that the developed nonmetallic anchors are more effective in resisting peeling-off cracks compared to the permanent steel anchors and the beams strengthened with the nonmetallic anchors provide comparable load-carrying capacity with respect to the steel anchored control beam.  相似文献   

14.
Results are presented of an experimental program undertaken to investigate the effects of strain rate on the behavior of reinforced concrete (RC) beams strengthened with carbon fiber-reinforced polymer (CFRP) laminates. Nine 3-m RC concrete beams, one unstrengthened, four strengthened with S-type CFRP laminates, and four strengthened with R-type laminates, were loaded under four different loading schedules. The stroke rates ranged from 0.0167 mm∕s (slow rate of loading) to 36 mm∕s (fast rate of loading). This induced a strain rate in the CFRP of 2.96 με∕s (slow rate) to 6,930 με∕s (fast rate). Some beams were subjected to either 1 or 12 cycles of loading prior to a fast rate of loading to failure. The rapidly loaded beams showed an increase of approximately 5% in capacity, stiffness, and energy absorption. Ductility and the mode of failure were not directly affected by the change in loading rate. Precycled beams performed similarly to the beams loaded monotonically to failure but showed a 10% increase in service stiffness and a 10% loss in energy absorption. A finite-element, layered analysis is presented to predict the moment-curvature response of CFRP strengthened RC beams. The model includes the effects of strain rate and correlates well with the experimental data.  相似文献   

15.
In this paper, efficiency and effectiveness of carbon fiber reinforced polymers (CFRPs) in upgrading the shear strength and ductility of seismically deficient corner or knee reinforced concrete beam-column joints have been studied. For this purpose, four as-built corner/knee joints were constructed with no transverse reinforcement, representing extreme case of preseismic code design construction practice of joints and encompassing many existing beam-column corner joints. Out of these four as-built specimens, two specimens were used as baseline specimens (control specimens) and other two were strengthened with CFRP sheets under two different schemes (strengthened specimens). In the first scheme, CFRP sheets were epoxy bonded to joint, beams, and part of the column regions. In the second scheme, however, sheets were epoxy bonded to joint region only but they were effectively prevented against any possible debonding through mechanical anchorages. All these four subassemblages were subjected to cyclic lateral load histories to simulate loading due to earthquake and provide the equivalent of severe earthquake damage. The damaged control specimens were then repaired by filling their cracks through epoxy and externally bonding them with CFRP sheets under the same above two schemes. These repaired specimens were subjected to the similar cyclic lateral load history and their response histories were obtained. Response histories of control, repaired, and strengthened specimens were then compared. The results were compared through hysteretic loops, load-displacement envelopes, column profiles, ductility, and stiffness degradation. The comparison shows that CFRP sheets are very effective in improving shear resistance and deformation capacity of the corner beam-column joints and delaying their stiffness degradation. Shear capacities of control, repaired, and strengthened specimens were also predicted using writers’ published formulation. The predicted shear capacities were in a good agreement with the experimental values.  相似文献   

16.
Bond tests were conducted on concrete beams strengthened with near-surface-mounted (NSM) nonprestressed and prestressed carbon fiber-reinforced polymer (CFRP) rods under static loading. In the NSM technique, the CFRP rods are placed inside precut grooves and bonded to the concrete with epoxy adhesive. Six concrete beams were tested. The test variables included presence of internal tension steel reinforcement (unreinforced and reinforced), use of NSM CFRP strengthening (nonprestressed and prestressed), and type of CFRP rod (spirally wound and sand blasted). The beams were tested statically in four-point bending. Based on the test results, the transfer length for the prestressed CFRP rod in epoxied groove was 150 and 210 mm for the sand blasted and spirally wound rods, respectively. The main failure mode was debonding between the CFRP rod and the epoxy that starts at sections close to the midspan then, as the load increases, it propagates toward the supports. At failure, the beams strengthened with a given rod type showed the same CFRP strain at sections close to the support (29% of ultimate strain for spirally wound bars and 39% of ultimate strain for sand blasted bars). A cracked section analysis was carried out and compared well with the measured results.  相似文献   

17.
Four large-scale reinforced concrete beams were constructed and tested to investigate the effectiveness of external poststrengthening with prestressed fiber reinforced polymer (FRP) sheets. One of the beams served as a control specimen, another was strengthened with nonprestressed carbon FRP sheets, and the remaining two were strengthened with prestressed carbon FRP sheets. Presented is a method of prestressing multiple layers of the carbon fiber sheets during the application process and the experimental and analytical behavior of the beams under quasi-static loading. Comparisons are made between the control beam, the beam reinforced with nonprestressed carbon FRP sheets, and the beams strengthened with prestressed sheets. Serviceability and ultimate conditions are considered in the theoretical prediction of beam behavior, including the effects of multiple layer prestressing and external loading. The bonding of prestressed FRP sheets to the tensile face of concrete beams improved both the serviceability and the ultimate behavior of the reinforced concrete beams.  相似文献   

18.
This paper presents experimental results and a numerical analysis of the reinforced concrete (RC) beams strengthened in flexure with various externally bonded carbon fiber-reinforced polymer (CFRP) configurations. The aim of the experimental work was to investigate the parameters that may delay the intermediate crack debonding of the bottom CFRP laminate, and increase the load carrying capacity and CFRP strength utilization ratio. Ten rectangular RC specimens with a clear span of 4.2?m, categorized in two series, were tested to evaluate the effect of using the additional U-shaped CFRP systems on the intermediate crack debonding of the bottom laminate. Two different configurations of the additional systems were proposed, namely, continuous U-shaped wet layup sheets and spaced side-bonded CFRP L-shaped laminates. The fiber orientation effect of the side-bonded sheets was also investigated. A numerical analysis using an incremental nonlinear displacement-controlled 3D finite-element (FE) model was developed to investigate the flexural and CFRP/concrete interfacial responses of the tested beams. The finite-element model accounts for the orthotropic behavior of the CFRP laminates. An appropriate bond-slip model was adopted to characterize the behavior of the CFRP/concrete interface. Comparisons between the FE predictions and experimental results show very good agreement in terms of the load-deflection and load-strain relationships, ultimate capacities, and failure modes of the beams.  相似文献   

19.
For reinforced concrete beams with the same shear and flexural reinforcements, shear failure is most likely to occur in deep beams rather than in regular beams. Thus, retrofitting of deep beams with shear deficiencies is of great importance. Externally bonded reinforcement such as carbon fiber reinforced polymer (CFRP) provides an excellent solution in these situations. In order to investigate the shear behavior of deep beams with externally bonded CFRP shear reinforcement, 16 deep beams without steel shear reinforcement were cast at the concrete laboratory of New Jersey Institute of Technology. After the beams were kept in the curing room for 28 days, carbon fiber strips and fabrics were applied outside of the beams at various orientations with respect to the axis of the beam. All beams were tested on a 979?kN (220?kip) MTS testing machine. Results of test demonstrate the feasibility of using externally applied, epoxy-bonded CFRP system to restore or increase the shear capacity of deep beams. The CFRP system can significantly increase the serviceability, ductility, and ultimate shear strength of a concrete beam, thus restoring deep beam shear strength using CFRP is a highly effective technique. An analysis and design method for shear strengthening of deep beams using externally bonded CFRP has also been proposed as well.  相似文献   

20.
This paper presents experimental results of reinforced concrete beams strengthened using near-surface mounted (NSM) carbon fiber-reinforced polymer (CFRP) reinforcement. A total of nine beam specimens were tested under fatigue loads. In addition, two specimens were tested for monotonic capacity. The beams were 3,500 mm long with a cross section of 254 mm deep by 152 mm wide. Different load ranges were considered in the fatigue tests to construct the fatigue life curves. The test results showed that under monotonic loading, the beam strengthened with NSM CFRP rod exhibited increases of 26 and 50% in the yield and ultimate load over the control beam, respectively. Under cyclic loading, the fatigue life for the strengthened beams was 24% higher than that of the control unstrengthened beams. An analytical model using sectional analysis and strain-life approach was developed to estimate the fatigue life of the specimens at various cyclic load ranges. A good agreement between the experimental results and analytical prediction of the fatigue life was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号