首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A one-fourth scale outrigger beam-column frame with as-built details was tested to assess its performance under reversed cyclic loading and to develop a retrofit procedure suitable for moderate seismic regions. The ductility of the as-built frame was limited due to pullout of poorly embedded positive moment reinforcement in the joint and shear inadequacy in the joint and beam. Strut-and-tie truss idealizations were developed to aid in predicting the failure mechanism and failure loads. Sectional and nonlinear finite-element analyses were used to predict the performance of the as-built outrigger frames. The retrofit procedure involved fiber-reinforced concrete sleeving of the beam and the joint, together with column jacketing, to enable plastic hinging and energy dissipation to occur in the column. This retrofit solution increased the strength, ductility, and energy absorption of the system. The provision of high-performance fiber-reinforced concrete in the beam sleeve was very effective in controlling the cracks and hence would improve durability.  相似文献   

2.
3.
The State Street Bridge, in Salt Lake City, was designed and built in 1965 according to the 1961 AASHO specifications; the design did not include earthquake-induced forces or displacements since only wind loads were considered. The bridge consists of four reinforced concrete (RC) bents supporting composite welded steel girders; the bents are supported on cast-in-place concrete piles and pile caps. A vulnerability analysis of the bridge was conducted that determined deficiencies in (1) confinement of column lap splice regions, (2) anchorage of longitudinal column bars in the bent cap, (3) confinement of column plastic hinge zones, and (4) shear capacity of columns and bent cap–column joints. Seismic retrofit designs using carbon-fiber-reinforced-polymer (CFRP) composites and steel jackets were performed and compared for three design spectra, including the 10% probability of exceedance in 250 years earthquake. The CFRP composite design was selected for implementation and application of the composite was carried out in the summer of 2000 and 2001, while the bridge was in service. The paper describes the CFRP composite design, which, in addition to column jackets, implemented an “ankle wrap” for improving joint shear strength and a “U-strap” for improving anchorage of column bars in the bent cap; other retrofit measures were implemented, such as bumper brackets and a deck slab retrofit. A capacity versus demand evaluation of the as-built and retrofitted bents is presented.  相似文献   

4.
In this paper, efficiency and effectiveness of carbon fiber reinforced polymers (CFRPs) in upgrading the shear strength and ductility of seismically deficient corner or knee reinforced concrete beam-column joints have been studied. For this purpose, four as-built corner/knee joints were constructed with no transverse reinforcement, representing extreme case of preseismic code design construction practice of joints and encompassing many existing beam-column corner joints. Out of these four as-built specimens, two specimens were used as baseline specimens (control specimens) and other two were strengthened with CFRP sheets under two different schemes (strengthened specimens). In the first scheme, CFRP sheets were epoxy bonded to joint, beams, and part of the column regions. In the second scheme, however, sheets were epoxy bonded to joint region only but they were effectively prevented against any possible debonding through mechanical anchorages. All these four subassemblages were subjected to cyclic lateral load histories to simulate loading due to earthquake and provide the equivalent of severe earthquake damage. The damaged control specimens were then repaired by filling their cracks through epoxy and externally bonding them with CFRP sheets under the same above two schemes. These repaired specimens were subjected to the similar cyclic lateral load history and their response histories were obtained. Response histories of control, repaired, and strengthened specimens were then compared. The results were compared through hysteretic loops, load-displacement envelopes, column profiles, ductility, and stiffness degradation. The comparison shows that CFRP sheets are very effective in improving shear resistance and deformation capacity of the corner beam-column joints and delaying their stiffness degradation. Shear capacities of control, repaired, and strengthened specimens were also predicted using writers’ published formulation. The predicted shear capacities were in a good agreement with the experimental values.  相似文献   

5.
The U.S. Interstate 80 bridge over State Street in Salt Lake City is very near the Wasatch fault, which is active and capable of producing large earthquakes. The bridge was designed and built in 1965 according to the 1961 American Association of State Highway Officials specifications, which did not consider earthquake-induced forces or displacements. The bridge consists of reinforced concrete bents supporting steel plate welded girders. The bents are supported on cast-in-place concrete piles and pile caps. A seismic retrofit design was developed using carbon fiber reinforced polymer (CFRP) composites, which was implemented in the summer of 2000 and the summer of 2001, to improve the displacement ductility of the bridge. The seismic retrofit included column jacketing, as well as wrapping of the bent cap and bent cap-column joints for confinement, flexural, and shear strength increase. This paper describes the specifications developed for the CFRP composite column jackets and composite bent wrap. The specifications included provisions for materials, constructed thickness based on strength capacity, and an environmental durability reduction factor. Surface preparation, finish coat requirements, quality assurance provisions, which included sampling and testing, and constructability issues regarding the application of fiber composite materials in the retrofit of concrete bridges are also described.  相似文献   

6.
This paper presents an evaluation of the seismic performance and retrofit of reinforced-concrete bridge columns with structural flares. Experimental and analytical studies were performed on four 40%-scale specimens. Two specimens represented the as-built columns, while the other two were retrofitted with steel jackets for shear capacity enhancement. The results indicate that some of the existing methods for evaluating the shear capacity of columns can be unconservative and could overestimate the shear capacity of the columns included in this study by 60%. It is also shown that by implementing proper detailing, steel jackets can be used to enhance the shear capacity and ductility of flared columns with no appreciable increase in the shear demand.  相似文献   

7.
In this paper, the efficiency and effectiveness of carbon-fiber-reinforced polymer (CFRP) sheets for upgrading the shear strength and ductility of a seismically deficient exterior beam-column joint were studied and compared with an American Concrete Institute (ACI)-based design joint specimen. One as-built joint specimen, representing the preseismic code design and construction practice for joints and one ACI-based design joint specimen, satisfying the seismic design requirements of the current code of practice were cast. The as-built specimen was used as baseline (control) specimen. These two specimens (i.e., the as-built control and the ACI-based specimens) were subjected to cyclic lateral load histories to induce damage equivalent to damage expected from a severe earthquake. The damaged control specimen was then repaired by filling its cracks with epoxy and externally bonding CFRP sheets to the joint, the beam, and part of the column regions. This specimen was identified as the repaired specimen. The repaired specimen was subjected to a similar cyclic lateral load history, and its response history was recorded. The response histories of the as-built control, the repaired, and the ACI-based design specimen were then compared. The test results demonstrated that externally bonded CFRP sheets can effectively improve both the shear strength and the deformation capacity of seismically deficient and damaged beam-column joints to a state comparable to the ACI-based design joint.  相似文献   

8.
Most of the experimental studies available in literature on the seismic assessment and retrofit of existing, poorly detailed, reinforced concrete (RC) beam-column joints, typical of pre-1970s construction practice, have concentrated on the two-dimensional (2D) response, using unidirectional cyclic loading testing protocol and constant axial load. Even more limited information is available on the performance of exterior (corner) three-dimensional (3D) RC beam-column joints with substandard detailing subjected to bidirectional loading regime. In this study, the results of a comprehensive experimental program is presented, aiming to show the effects of varying axial and bidirectional loading on the seismic performance of deficient exterior RC beam-column joints before and after retrofit. Ten exterior beam-column joint subassemblies are tested, including four as-built specimens and six retrofitted specimens using externally bonded glass fiber-reinforced polymer (GFRP) sheets. Test results are herein presented and conclusions are drawn on the basis of the observed global and local performance. The significance of the triaxial interaction of varying axial and bidirectional loading effects on the response of retrofitted corner joints is confirmed by the experimental findings. The proposed retrofit solution was shown to be capable of re-establishing an appropriate hierarchy of strength within the subassembly, protecting the panel zone region from shear failure while promoting the formation of a plastic hinge in the beam.  相似文献   

9.
The research presented in this study involves full-scale experimental evaluation of carbon fiber-reinforced polymer (CFRP) rehabilitation for existing beam-column joints designed for gravity load with common pre-1970s deficient reinforcement details when subjected to cyclic loading. Numerous studies have demonstrated effectiveness of externally bonded fiber-reinforced polymer (FRP) materials for retrofitting the deteriorating RC structures. Although these materials are widely used in bridges, their applications in buildings have been somewhat limited. In particular, the experimental investigations on external FRP retrofit of deficient beam-column joints have not thoroughly been investigated and they are mainly on scaled-down specimens. The failure of these subassemblies, which possess lack of shear reinforcement within the joint core and shortly embedded positive beam reinforcement, would possibly result in catastrophic collapse of reinforced concrete frame structure during an earthquake event. Recognizing the urgent need to upgrade these structural subassemblies, the current investigation uses CFRP retrofit techniques to enhance the performance of such deficient joints. Experimental variables studied entail the developed CFRP retrofit configurations, and magnitude of the applied column axial load. Comparative analysis of the lateral loads versus drift hysteresis loops, stiffness degradation, and total dissipated energy curves of three as-built and three corresponding CFRP-retrofitted RC joints revealed that significant improvement in the shear capacity of the upgraded joints occurred. More importantly, the slippage of short embedded beam positive reinforcement into the joint was substantially controlled due to the developed CFRP retrofit. The results demonstrate the effectiveness of CFRP retrofit configurations in enhancing the structural performance of actual size connections.  相似文献   

10.
Shear failure of exterior beam-column joints is identified as the principal cause of collapse of many moment-resisting frame buildings during recent earthquakes. Effective and economical strengthening techniques to upgrade joint shear resistance and ductility in existing structures are needed. In this paper, efficiency and effectiveness of carbon fiber-reinforced polymer (CFRP) sheets in upgrading the shear strength and ductility of seismically deficient exterior beam-column joints have been studied. Four as-built joints were constructed with nonoptimal design parameters (inadequate joint shear strength with no transverse reinforcement) representing preseismic code design construction practice of joints and encompassing most of existing beam-column connections. Out of these four as-built specimens, two specimens were used as baseline specimens (control specimens) and other two were strengthened with CFRP sheets under two different schemes (strengthened specimens). In the first scheme, CFRP sheets were epoxy bonded to joint, beams, and part of the column regions. In the second scheme, however, sheets were epoxy bonded to joint region only but they were effectively prevented against any possible debonding through mechanical anchorages. All of these four subassemblages were subjected to cyclic lateral load histories so as to provide the equivalent of severe earthquake damage. The damaged control specimens were then repaired by filling their cracks through epoxy and externally bonding them with CFRP sheets under the same above two schemes. These repaired specimens were subjected to the similar cyclic lateral load history and their response histories were obtained. Response histories of control, repaired, and strengthened specimens were then compared. The results were compared through hysteretic loops, load-displacement envelopes, column profiles, joint shear distortion, ductility, and stiffness degradation. The comparison shows that CFRP sheets are very effective in improving shear resistance and deformation capacity of the exterior beam-column joints and delaying their stiffness degradation.  相似文献   

11.
The target displacement ductility requirements for circular RC single-column bridge bents are considered using a proposed multifailure mode algorithm to determine the required thickness of fiber-reinforced polymer wraps (FRPs). The procedure is developed using two in-house computer algorithms, PACCC (plastic analysis of circular concrete columns) and PACCC-FRP, to generate a moment-curvature analysis using circular segment slices and subsequent failure mode predictions in single-column bents for both FRP-wrapped and unwrapped circular RC sections. The results of the study showed good comparison to published experimental tests at the ultimate force-deflection states of RC sections and against three commercial “software test beds.” The study uses PACCC-FRP to show that single columns experiencing a brittle failure may be retrofitted with FRP wraps in order to increase the displacement ductility and satisfy target ductility values within the ductility wrap envelope, or wrap-saturation level, as established herein.  相似文献   

12.
An experimental testing program was conducted to investigate the uplift capacity of various rafter to top plate connections. Rather than simply testing the fastener in an ideal test specimen configuration, attention is paid to more realistic test specimens that account for as-built conditions. Consideration is also given to repetitive systems of these connections such as would be found in roof systems. The results from this investigation provide basic data on failure modes and capacities. Comparisons are made between test values, calculated design values, and manufacturers' published values. In addition to metal straps, alternative connection methods such as adhesives are investigated, and consideration is given to both new construction and retrofit of existing structures. The results from this study are used to develop possible schedules for rafter to top plate connections considering different roof slopes, rafter lengths, wind speeds, exposures, and internal pressures.  相似文献   

13.
Retrofitting of Rectangular Columns with Deficient Lap Splices   总被引:2,自引:0,他引:2  
The cyclic behavior of eight 0.4-scale reinforced concrete column specimens is investigated. The columns incorporated deficient design details to simulate bridge columns built in Washington State prior to 1971. Two columns were tested as reference specimens, five were tested after retrofitting using carbon fiber-reinforced polymer (CFRP), and one was tested after retrofitting using a conventional steel jacket. All the specimens were tested under constant gravity load and incrementally increasing lateral loading cycles. The specimens had rectangular cross sections with aspect ratios of 1.5 and 2.0. The parameters investigated included the amount of CFRP reinforcement, different retrofitting jacket configurations, and different retrofitting materials. For the as-built specimens, two modes of failure occurred, namely low cyclic fatigue of longitudinal reinforcement and lap splice failure. For the retrofitted specimens, no lap splice failure was observed. All the retrofitted specimens failed due to low cyclic fatigue failure of the longitudinal bars. The retrofitting measures improved the displacement ductility, energy dissipation, and equivalent viscous damping. In addition, increasing the amount of CFRP reinforcement improved the performance of the test specimens.  相似文献   

14.
This paper summarizes comprehensive experimental studies on scaled models of squat bridge columns repaired and retrofitted with advanced composite-material jackets. In the experimental program, a total of 14 half-scale squat circular and rectangular reinforced concrete columns were tested under fully reversed cyclic shear in a double bending configuration. In order to provide a basis for comparison, a total of three as-built columns were tested. Another 10 column samples were tested after being retrofitted with different composite jacket systems. One circular as-built column was repaired after failure. The repair process involved both crack injection as well as addition of carbon/epoxy composite jacket. The repaired column was then retested and evaluated. Experimental results showed that all as-built columns developed an unstable behavior and failed in brittle shear mode. The common failure mode for all retrofitted samples was due to flexure with significant improvement in the column ductility. The repaired column demonstrated ductility enhancement over the as-built sample.  相似文献   

15.
16.
Repair, strengthening, and retrofit of reinforced and prestressed concrete members have become increasingly important issues as the World’s infrastructure deteriorates with time. Buildings and bridges are often in need of repair or strengthening to accommodate larger live loads as traffic and building occupancies change. In addition, inadequate design and detailing for seismic and other severe natural events has resulted in considerable structural damage and loss of life, particularly in reinforced concrete buildings. Numerous buildings and bridges suffer damage during such events and need to be repaired. The use of carbon fiber reinforced polymer (CFRP) composite fabric bonded to the surface of concrete members is comparatively simple, quick and virtually unnoticeable after installation. The use of composites has become routine for increasing both the flexural and shear capacities of reinforced and prestressed concrete beams. Earthquake retrofit of bridge and building structures has relied increasingly on composite wrapping of columns, beams and joints to provide confinement and increase ductility. This paper presents the results of cyclic testing of three large-scale reinforced concrete slab–column connections. Each of the specimens was a half-scale model of an interior slab–column connection common to flat-slab buildings. The specimens were reinforced according to ACI-318 code requirements and included slab shear reinforcement. While supporting a slab gravity load equivalent to dead load plus 30% of the live load, the specimens were subjected to an increasing cyclic lateral loading protocol up to 5% lateral drift. The specimens were subjected to the same loading protocol after they were repaired with epoxy crack sealers and CFRP sheet on the surfaces of the slab. Repair with epoxy and CFRP on the top surface of the slab was able to restore both initial stiffness and ultimate strength of the original specimen.  相似文献   

17.
An experimental research program is described regarding the use of externally applied carbon fiber-reinforced plastic (CFRP) jackets for seismic rehabilitation of reinforced concrete interior beam-column joints, which were designed for gravity loads. The joints had steel reinforcement details that are known to be inadequate by current seismic codes in terms of joint shear capacity due to the absence of transverse steel hoops and bond capacity of beam bottom steel reinforcing bars at the joint. Lap splicing of beam bottom steel reinforcement at the joint using externally applied longitudinal CFRP composite laminates is investigated. Improvement of joint shear capacity using diagonal CFRP composite laminates is another strengthening scheme employed. Concrete crack widths for the as-built specimens and the extent of CFRP delamination for the rehabilitated specimens at various drift ratios are reported. The test results indicate that CFRP jackets are an effective rehabilitation measure for improving the seismic performance of existing beam-column joints with inadequate seismic details in terms of increased joint shear strength and inelastic rotation capacity. In addition, CFRP laminates are effective rehabilitation measures for overcoming problems associated with beam bottom steel bars that have inadequate embedment into the beam-column joints.  相似文献   

18.
This paper presents an inclusive testing program conducted on scaled models of reinforced concrete (RC) bridge columns with insufficient lap-splice length. Thirteen half-scale circular and square column samples were tested in flexure under lateral cyclic loading. Three columns were tested in the as-built configuration whereas ten samples were tested after being retrofitted with different composite-jacket systems. A brittle failure was observed in the as-built samples due to bond deterioration of the lap-spliced longitudinal reinforcement. The jacketed circular columns demonstrated a significant improvement in their cyclic performance. Yet, tests conducted on square jacketed columns showed a limited improvement in clamping on the lap-splice region and for enhancing the ductility of the column.  相似文献   

19.
Six full-scale concrete masonry walls were tested under free-field blast loading using different charge sizes up to 250?kg of ammonium nitrate/fuel oil (ANFO) and at a constant stand-off distance of 15.0?m to cover a wide range of expected damage levels. Five walls were retrofitted with cold-formed steel studs anchored to the wall backs and were compared to the remaining as-built wall. Significant enhancement to the out-of-plane blast resistance of the retrofitted walls, compared to the as-built wall, was observed. This enhancement is attributed to the development of a tied-arch action in the retrofitted walls in which the masonry forms a compression strut while the steel studs serve as the tie. A simplified single-degree-of-freedom model was used to analyze the experimental results, and the model results agreed well with the observed damage levels and the resistances of the walls. In addition, the effectiveness of the proposed retrofit technique was evaluated in terms of strength enhancement and wall deflection reduction. The test results were also compared with those predicted by available blast damage assessment models for unreinforced masonry walls. However, it was found that available models, which do not account for the tied-arch mechanism, greatly underestimate the actual blast capacity of the retrofitted walls because of the assumption of a tensile flexural failure mode. Additionally, the proposed retrofit technique shifts the mode of failure from flexure to shear.  相似文献   

20.
This paper reports on the fourth phase of a multiphase study undertaken at the American University of Beirut (AUB) to examine the effect of fiber-reinforced polymer (FRP) sheets in confining bond-critical regions in reinforced concrete beams. Results of the first three phases showed that glass- and carbon-fiber-reinforced polymer (GFRP and CFRP) sheets were effective in increasing the bond strength and improving the ductility of the mode of failure of tension lap splices in high-strength concrete (HSC) and normal-strength concrete (NSC) beams. The main objective of the fourth phase of the AUB study was to assess the effect of CFRP sheets in improving the serviceability and ultimate response of beam anchorage specimens. The added experimental data and the improved knowledge of the bond behavior of FRP confined concrete members will encourage the use of FRP technology to strengthen and retrofit bond anchorage zones. Ten beam anchorage specimens were tested in positive bending in two series. The variables were bar size, anchorage length, and concrete strength. For each bar size, anchorage length, and concrete strength, two companion specimens—identical except for whether the anchorage zone was wrapped with FRP sheets or not wrapped—were tested. The test results demonstrated that CFRP sheets were effective in enhancing the bond strength and ductility of anchorage zones in beam anchorage specimens where splitting failures were imminent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号