首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Continuous concrete beams are structural elements commonly used in structures that might be exposed to extreme weather conditions and the application of deicing salts, such as bridge overpasses and parking garages. In such structures, reinforcing continuous concrete beams with the noncorrodible fiber-reinforced polymer (FRP) bars is beneficial to avoid steel corrosion. However, the linear-elastic behavior of FRP materials makes the ability of continuous beams to redistribute loads and moments questionable. A total of seven full-scale continuous concrete beams were tested to failure. Six beams were reinforced with glass fiber-reinforced polymer (GFRP) longitudinal bars, whereas one was reinforced with steel as control. The specimens have rectangular cross section of 200×300??mm and are continuous over two spans of 2,800?mm each. Both steel and GFRP stirrups were used as transverse reinforcement. The material, spacing, and amount of transverse reinforcement were the primary investigated parameters in this study. In addition, the experimental results were compared with the code equations to calculate the ultimate capacity. The experimental results showed that moment redistribution in FRP-reinforced continuous concrete beams is possible and is improved by increasing the amount of transverse reinforcement. Also, beams reinforced with GFRP stirrups illustrated similar performance compared with their steel-reinforced counterparts.  相似文献   

2.
In addition to their high strength and light weight, fiber-reinforced polymer (FRP) composite reinforcing bars offer corrosion resistance, making them a promising alternative to traditional steel reinforcing bars in concrete bridge decks. FRP reinforcement has been used in several bridge decks recently constructed in North America. The Morristown Bridge, which is located in Vermont, United States, is a single span steel girder bridge with integral abutments spanning 43.90 m. The deck is a 230 mm thick concrete continuous slab over girders spaced at 2.36 m. The entire concrete deck slab was reinforced with glass FRP (GFRP) bars in two identical layers at the top and the bottom. The bridge is well instrumented at critical locations for internal temperature and strain data collection with fiber-optic sensors. The bridge was tested for service performance using standard truck loads. The construction procedure and field test results under actual service conditions revealed that GFRP rebar provides very good and promising performance.  相似文献   

3.
Since bridge deck slabs directly sustain repeated moving wheel loads, they are one of the most bridge elements susceptible to fatigue failure. Recently, glass fiber-reinforced polymer (FRP) composites have been widely used as internal reinforcement for concrete bridge deck slabs as they are less expensive compared to the other kinds of FRPs (carbon and aramid). However, there is still a lack of information on the performance of FRP–reinforced concrete elements subjected to cyclic fatigue loading. This research is designed to investigate the fatigue behavior and fatigue life of concrete bridge deck slabs reinforced with glass FRP bars. A total of five full-scale deck slabs were constructed and tested under concentrated cyclic loading until failure. Different reinforcement types (steel and glass FRP), ratios, and configurations were used. Different schemes of cyclic loading (accelerated variable amplitude fatigue loading) were applied. Results are presented in terms of deflections, strains in concrete and FRP bars, and crack widths at different levels of cyclic loading. The results showed the superior fatigue performance and longer fatigue life of concrete bridge deck slabs reinforced with glass FRP composite bars.  相似文献   

4.
In the last decade, noncorrodible fiber-reinforced polymer (FRP) reinforcing bars have been increasingly used as the main reinforcement for concrete structures in harsh environments. Also, owing to their lower cost compared with other types of FRP bars, glass-FRP (GFRP) bars are more attractive to the construction industry, especially for implementation in bridge deck slabs. In North America, bridge deck slabs are exposed to severe environmental conditions, such as freeze-thaw action, in addition to traffic fatigue loads. Although the bond strength of GFRP bars has been proved to be satisfactory, their durability performance under the dual effects of fatigue-type loading and freeze-thaw action is still not well understood. Few experimental test data are available on the bond characteristics of FRP bars in concrete elements under different loading and environmental conditions. This research investigates the individual and combined effects of freeze-thaw cycles along with sustained axial load and fatigue loading on the bond characteristics of GFRP bars embedded in concrete. An FRP-reinforced concrete specimen was developed to apply axial-tension fatigue or sustained loads to GFRP bars within a concrete environment. A total of thirty-six test specimens was constructed and tested. The test parameters included bar diameter, concrete cover thickness, loading scheme, and environmental conditioning. After conditioning, each specimen was sectioned into two halves for pullout testing. Test results showed that fatigue load cycles resulted in approximately 50% loss in the bond strength of sand-coated GFRP bars to concrete, while freeze-thaw cycles enhanced their bond to concrete by approximately 40%. Larger concrete covers were found more important in cases of larger bar sizes simultaneously subjected to fatigue load and freeze-thaw cycles.  相似文献   

5.
The development/splice strength and the pullout local bond stress-slip response of glass fiber-reinforced polymer (GFRP) bars in tension were experimentally investigated using beam specimens and pullout specimens, respectively. Two types of 12-mm (0.47-in.)-diameter GFRP bars were evaluated, namely, thread wrapped and ribbed. The test parameters included the concrete cover, the splice length, and the area of steel confinement for the beam specimens, and the concrete compressive strength for the pullout specimens. Companion steel reinforced beams were also tested for comparison. All beam specimens reinforced with thread-wrapped GFRP bars experienced pullout mode of bond failure, while all specimens reinforced with ribbed GFRP bars or steel bars experienced splitting mode of bond failure. It was found that the bond strength of FRP bars is largely dependent on the surface conditions of the bars. The pullout local bond stress-slip response of ribbed GFRP bars is intrinsically similar to that of steel bars reported in the literature. The bond strength of both types of GFRP bars investigated was about two to three times lower than that of steel bars. Predictions of the development/splice strength of GFRP bars in accordance with the ACI Committee 440 guidelines were unconservative in comparison with the test data. Also, in contradiction with the current ACI 440 report, the use of transverse confining reinforcement increased the bond strength by a sizable 15–30%.  相似文献   

6.
This study investigated the flexural behavior of corroded steel reinforced concrete beams repaired with carbon-fiber-reinforced polymer (CFRP) sheets under repeated loading. Thirty beams (152×254×2,000?mm) were constructed and tested. Fatigue flexural failure occurred in 29 of these beams. The study showed that pitting of the steel reinforcement due to corrosion occurred only after about a 7% actual mass loss which coincided with a decrease in the fatigue performance of the beam. The controlling factor for the fatigue strength of the beams is the fatigue strength of the steel bars. Repairing with CFRP sheets increased the fatigue capacity of the beams with corroded steel reinforcement beyond that of the control unrepaired beams with uncorroded steel reinforcement. Beams repaired with CFRP at a medium corrosion level and then further corroded to a high corrosion level before testing had a comparable fatigue performance to those that were repaired and tested after corroding directly to a high corrosion level.  相似文献   

7.
Recently, there has been a rapid increase in using noncorrosive fiber-reinforced polymers (FRP) reinforcing bars as alternative reinforcement for bridge deck slabs, especially those in harsh environments. A new two-span girder type bridge, Cookshire-Eaton Bridge (located in the municipality of Cookshire, Quebec, Canada), was constructed with a total length of 52.08 m over two equal spans. The deck was a 200-mm-thick concrete slab continuous over four spans of 2.70 m between girders with an overhang of 1.40 m on each side. One full span of the bridge was totally reinforced using glass fiber-reinforced polymer (GFRP) bars, while the other span was reinforced with galvanized steel bars. The bridge deck was well instrumented at critical locations for internal temperature and strain data collection using fiber optic sensors. The bridge was tested for service performance using calibrated truckloads as specified by the Canadian Highway Bridge Design Code. The construction procedure and field test results under actual service conditions revealed that GFRP rebar provides very competitive performance in comparison to steel.  相似文献   

8.
Reinforcing concrete with a combination of steel and glass fiber-reinforced polymer (GFRP) bars promises favorable strength, serviceability, and durability. To verify its promise and to support design of concrete structures with this hybrid type of reinforcement, we have experimentally and theoretically investigated the load-deflection behavior of concrete beams reinforced with hybrid GFRP and steel bars. Eight beams, including two control beams reinforced with only steel or only GFRP bars, were tested. The amount of reinforcement and the ratio of GFRP to steel were the main parameters investigated. Hybrid GFRP/steel-reinforced concrete beams with normal effective reinforcement ratios exhibited good ductility, serviceability, and load carrying capacity. Comparisons between the experimental results and the predictions from theoretical analysis showed that the models we adopted could adequately predict the load carrying capacity, deflection, and crack width of hybrid GFRP/steel-reinforced concrete beams.  相似文献   

9.
Continuous concrete beams are commonly used elements in structures such as parking garages and overpasses, which might be exposed to extreme weather conditions and the application of deicing salts. The use of the fiber-reinforced polymers (FRP) bars having no expansive corrosion product in these types of structures has become a viable alternative to steel bars to overcome the steel-corrosion problems. However, the ability of FRP materials to redistribute loads and moments in continuous beams is questionable due to the linear-elastic behavior of such materials up to failure. This paper presents the experimental results of four reinforced concrete beams with rectangular cross section of 200×300?mm continuous over two spans of 2,800 mm each. The material and the amount of longitudinal reinforcement were the main investigated parameters in this study. Two beams were reinforced with glass FRP (GFRP) bars in to different configurations while one beam was reinforced with carbon FRP bars. A steel-reinforced continuous concrete beam was also tested to compare the results. The experimental results showed that moment redistribution in FRP-reinforced continuous concrete beams is possible if the reinforcement configuration is chosen properly. Increasing the GFRP reinforcement at the midspan section compared to middle support section had positive effects on reducing midspan deflections and improving load capacity. The test results were compared to the available design models and FRP codes. It was concluded that the Canadian Standards Association Code (CSA/S806-02) could reasonably predict the failure load of the tested beams; however, it fails to predict the failure location.  相似文献   

10.
The flexural performance of reinforced concrete-filled glass-fiber reinforced polymer (GFRP) tubes (CFFTs) has been investigated using seven specimens, 220?mm in diameter and 2.43?m long. Specimens were reinforced with either steel, GFRP, or carbon–fiber reinforced polymer (FRP) rebar of various sizes. Prefabricated GFRP tubes with most of the fibers oriented in the hoop direction were used in five specimens. One control specimen included conventional steel spirals of stiffness comparable to the GFRP tube and the other had no transverse reinforcement. Test results have shown that CFFT beams performed substantially better than beams with a steel spiral. Unlike CFFTs with FRP rebar, CFFTs with steel rebar failed in a sequential progressive manner, leading to considerable ductility. An analytical model capable of predicting the full response of reinforced CFFT beams, including the sequential progressive failure, has been developed, verified, and used in a parametric study. It is shown that laminate structure of the tube affects the behavior, only after yielding of the steel rebar. Steel reinforcement ratio significantly affects stiffness and strength, whereas concrete strength has an insignificant effect on the overall performance.  相似文献   

11.
The use of fiber-reinforced polymer (FRP) reinforcement is a practical alternative to conventional steel bars in concrete bridge decks, safety appurtenances, and connections thereof, as it eliminates corrosion of the steel reinforcement. Due to their tailorability and light weight, FRP materials also lend themselves to the development of prefabricated systems that improve constructability and speed of installation. These advantages have been demonstrated in the construction of an off-system bridge, where prefabricated cages of glass FRP bars were used for the open-post railings. This paper presents the results of full-scale static tests on two candidate post–deck connections to assess compliance with strength criteria at the component (connection) level, as mandated by the AASHTO Standard Specifications, which were used to design the bridge. Strength and stiffness until failure are shown to be accurately predictable. Structural adequacy was then studied at the system (post-and-beam) level by numerically modeling the nonlinear response of the railing under equivalent static transverse load, pursuant to well-established structural analysis principles of FRP RC, and consistent with the AASHTO LRFD Bridge Design Specifications. As moment redistribution cannot be accounted for in the analysis and design of indeterminate FRP RC structures, a methodology that imposes equilibrium and compatibility conditions was implemented in lieu of yield line analysis. Transverse strength and failure modes are determined and discussed on the basis of specification mandated requirements.  相似文献   

12.
The Val-Alain Bridge, located in the Municipality of Val-Alain on Highway 20 East, crosses over Henri River in Québec, Canada. The bridge is a slab-on-girder type with a skew angle of 20° over a single span of 49.89?m and a total width of 12.57?m. The bridge has four simply supported steel girders spaced at 3,145?mm. The deck slab is a 225-mm-thick concrete slab, with semi-integral abutments, continuous over the steel girders with an overhang of 1,570?mm on each side. The concrete deck slab and the bridge barriers were reinforced with glass fiber reinforced polymer (GFRP) reinforcing bars utilizing high-performance concrete. The Val-Alain Bridge is the Canada’s first concrete bridge deck totally reinforced with GFRP reinforcing bars. Using such nonmetallic reinforcement in combination with high-performance concrete leads to an expected service life of more than 75?years. The bridge is well instrumented with electrical resistance strain gauges and fiber-optic sensors at critical locations to record internal strain data. Also, the bridge was tested for service performance using calibrated truckloads. Design concepts, construction details, and results of the first series of live load field tests are presented.  相似文献   

13.
This paper presents the experimental results of the first phase of a study undertaken at the American University of Beirut to examine the effectiveness of fiber reinforced polymer (FRP) wraps to confine steel reinforcement in a tension lap splice region anchored in high-strength reinforced-concrete beams. Seven beam specimens were constructed. The specimens were reinforced on the tension side with three deformed bars spliced at midspan. The splice region was devoid of any transverse reinforcement to allow a full examination of the FRP wrap contribution. Glass fiber reinforced polymer (GFRP) sheets were used. The main test variables were the GFRP configuration in the splice region (one strip, two strips, or a continuous strip), and the number of layers of the GFRP wraps placed around the splice region (one layer or two layers). All GFRP wraps were U-shaped. Except for the epoxy adhesive, no other anchorage mechanism or bonding procedure was applied for the GFRP wraps on the concrete beam. Following the application of the GFRP wraps, the beams were tested in positive bending. The test results demonstrated that GFRP wraps were effective in enhancing the bond strength and ductility of failure mode of the tension lap splices, especially when continuous strips were applied over the splice region.  相似文献   

14.
The results of testing two simply and three continuously supported concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars are presented. The amount of GFRP reinforcement was the main parameter investigated. Over and under GFRP reinforcements were applied for the simply supported concrete beams. Three different GFRP reinforcement combinations of over and under reinforcement ratios were used for the top and bottom layers of the continuous concrete beams tested. A concrete continuous beam reinforced with steel bars was also tested for comparison purposes. The experimental results revealed that over-reinforcing the bottom layer of either the simply or continuously supported GFRP beams is a key factor in controlling the width and propagation of cracks, enhancing the load capacity, and reducing the deflection of such beams. Comparisons between experimental results and those obtained from simplified methods proposed by the ACI 440 Committee show that ACI 440.1R-06 equations can reasonably predict the load capacity and deflection of the simply and continuously supported GFRP reinforced concrete beams tested.  相似文献   

15.
This paper presents the results of an experimental study to investigate the role of each layer of reinforcement on the behavior of concrete bridge deck slabs reinforced with fiber-reinforced polymer (FRP) bars. Four full-scale concrete deck slabs of 3,000?mm length by 2,500?mm width and 200?mm depth were constructed and tested in the laboratory. One deck slab was reinforced with top and bottom mats of glass FRP bars. Two deck slabs had only a bottom reinforcement mat with different reinforcement ratios in the longitudinal direction, while the remaining deck slab was constructed with plain concrete without any reinforcement. The deck slabs were supported on two steel girders spaced at 2,000?mm center to center and were tested to failure under a central concentrated load. The three reinforced concrete slabs had very similar behavior and failed in punching shear mode at relatively high load levels, whereas the unreinforced slab behaved differently and failed at a very low load level. The experimental punching capacities of the reinforced slabs were compared to the theoretical predictions provided by ACI 318-05, ACI 440.1R-06, and a model proposed by the writers. The tests on the four deck slabs showed that the bottom transverse reinforcement layer has the major influence on the behavior and capacity of the tested slabs. In addition, the ACI 318-05 design method slightly overestimated the punching shear strength of the tested slabs. The ACI 440.1R-06 design method yielded very conservative predictions whereas the proposed method provided reasonable yet conservative predictions.  相似文献   

16.
Researchers at the University of Maine led an effort in the mid-1990s to develop and use glass-fiber-reinforced polymer (GFRP) tendons, instead of the commonly used steel-threaded bars, for stress-laminating timber bridge decks. The GFRP tendons are 12.7 mm (0.5 in.) in diameter and consist of seven-wire strands similar in construction to steel prestressing strands. Because the modulus of elasticity of the GFRP tendons is approximately 1/9 that of steel, they are not as susceptible to loss of prestress as steel bars and may not have to be restressed during the life of deck. In 1997, researchers obtained funding to design, construct, and monitor a stress-laminated timber bridge located in Milbridge, Maine, utilizing the new GFRP tendons. The bridge was constructed from preservative treated No. 2 and better eastern hemlock laminations and is 4.88 m (16 ft) long, 7.75 m (25 ft, 6 in.) wide, and 350 mm (14 in.) deep. Based on 4.25 years of field monitoring the tendon forces and moisture content, the GFRP tendons have maintained an adequate prestress level without having to be restressed.  相似文献   

17.
摘要:采用质量分数为5%的NaCl溶液在盐雾腐蚀箱进行30~90d加速腐蚀试验,研究了盐雾腐蚀对HRB400E钢筋低周疲劳行为和拉伸性能的影响。然后采用轴向位移控制模拟地震载荷对腐蚀钢筋开展了低周疲劳和拉伸试验,获得循环响应特征曲线和应变 寿命曲线。结合SEM断口形貌观察,分析钢筋的低周疲劳断裂机制。结果表明:盐雾腐蚀对钢筋的质量和尺寸有明显影响,钢筋表面产生腐蚀坑;钢筋的力学性能随腐蚀时间增加而降低,腐蚀90d的断裂伸长率下降率达461%,屈服强度在腐蚀30d以后可能就不再满足标准要求;腐蚀明显削弱了钢筋的抗循环载荷性能,导致低周疲劳寿命下降;腐蚀会减小钢筋的裂纹扩展区面积并加速裂纹扩展。  相似文献   

18.
The long-term behavior of glass fiber-reinforced polymer (GFRP) reinforcing bars is one of the most critical issues for the acceptance of these materials as reinforcement for concrete structures. There is a high demand for experimental studies to investigate the stability of the tensile strength, ultimate elongation, and elasticity modulus. GFRP reinforcing bars inherently have a low elasticity modulus, which must not significantly decrease over time under loading or the serviceability behavior of the concrete element containing them will be jeopardized. This paper evaluates the residual tensile properties of three sizes of sand-coated GFRP reinforcing bars in alkaline and water environments combined with sustained loading and elevated temperature. Bar diameters of 15.9 (No. 5), 12.7 (No. 4), and 9.5?mm (No. 3) were loaded for different durations, then tested in axial tension for residual tensile properties. The test periods varied from 1?to?4?months under elevated temperature to hasten degradation and simulate extended service periods. The reduction in tensile strength was found to be 7–13% of the guaranteed strength for the three bar sizes under elevated temperature, which is at least 26% higher than the specified design strength as recommended by ACI 440.1R-03. More importantly, no significant change in the elastic modulus was observed.  相似文献   

19.
The behavior of six 1:2.5-scale reinforced concrete cantilever wall specimens having an aspect ratio of 1.5, tested to failure and subsequently repaired and strengthened using fiber-reinforced polymer (FRP) sheets is investigated. Specimens were first repaired by removing heavily cracked concrete, lap splicing the fractured steel bars by welding new short bars, placing new hoops and horizontal web reinforcement, and finally casting nonshrink high-strength repair mortar. The specimens were then strengthened using FRP sheets and strips, with a view to increasing flexural as well as shear strength and ductility. In addition to different arrangements of steel and FRP reinforcement in the walls, a key parameter was the way carbon-FRP strips added for flexural strengthening were anchored; steel plates and steel angles were used to this effect. Steel plates were anchored using U-shaped glass-FRP (GFRP) strips or bonded metal anchors. Test results have shown that by using FRP reinforcement, the flexural and shear strength of the specimens can be increased. From the anchorage systems tested, metal plates combined with FRP strips appear to be quite efficient. The effectiveness of the bonded metal anchors used was generally less than that of the combination of plates and GFRP strips. In all cases, final failure of the FRP anchorage is brittle, but only occurs after the peak strength is attained and typically follows the fracture of steel reinforcement in critical areas, hence the overall behavior of the strengthened walls is moderately ductile.  相似文献   

20.
Glass fiber–reinforced polymer (GFRP) materials provide practical solutions to corrosion and site-maneuvering problems for civil infrastructures using conventional steel bars as reinforcements. In this study, the feasibility of using GFRP soil nails for slope stabilization is evaluated. The GFRP soil nail system consists of a GFRP pipe installed by the double-grouting technique. Two field-scale pullout tests were performed at a slope site. Fiber Bragg grating (FBG) sensors, strain gauges, linear variable displacement transformers (LVDTs), and a load cell were used to measure axial strain distributions and pullout force-displacement relationships during testing. The pullout test results of steel soil nails at another slope site are also presented for comparison. It is proven that the load transfer mechanisms of GFRP and steel soil nails have certain difference. Based on these test results, a simplified model using a hyperbolic shear stress-strain relationship was developed to describe the pullout performance of the GFRP soil nail. A parametric study was conducted using this model to study some factors affecting the pullout behavior of GFRP soil nails, including nail diameter, shear resistance of soil-grout interface, and ratio of interface shear coefficient to the Young’s modulus of the nail. The results indicate that the GFRP soil nail may exhibit excessive pullout displacement and thus a lower allowable pullout resistance than with the steel soil nail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号