首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The research presented in this study involves full-scale experimental evaluation of carbon fiber-reinforced polymer (CFRP) rehabilitation for existing beam-column joints designed for gravity load with common pre-1970s deficient reinforcement details when subjected to cyclic loading. Numerous studies have demonstrated effectiveness of externally bonded fiber-reinforced polymer (FRP) materials for retrofitting the deteriorating RC structures. Although these materials are widely used in bridges, their applications in buildings have been somewhat limited. In particular, the experimental investigations on external FRP retrofit of deficient beam-column joints have not thoroughly been investigated and they are mainly on scaled-down specimens. The failure of these subassemblies, which possess lack of shear reinforcement within the joint core and shortly embedded positive beam reinforcement, would possibly result in catastrophic collapse of reinforced concrete frame structure during an earthquake event. Recognizing the urgent need to upgrade these structural subassemblies, the current investigation uses CFRP retrofit techniques to enhance the performance of such deficient joints. Experimental variables studied entail the developed CFRP retrofit configurations, and magnitude of the applied column axial load. Comparative analysis of the lateral loads versus drift hysteresis loops, stiffness degradation, and total dissipated energy curves of three as-built and three corresponding CFRP-retrofitted RC joints revealed that significant improvement in the shear capacity of the upgraded joints occurred. More importantly, the slippage of short embedded beam positive reinforcement into the joint was substantially controlled due to the developed CFRP retrofit. The results demonstrate the effectiveness of CFRP retrofit configurations in enhancing the structural performance of actual size connections.  相似文献   

2.
Most of the experimental studies available in literature on the seismic assessment and retrofit of existing, poorly detailed, reinforced concrete (RC) beam-column joints, typical of pre-1970s construction practice, have concentrated on the two-dimensional (2D) response, using unidirectional cyclic loading testing protocol and constant axial load. Even more limited information is available on the performance of exterior (corner) three-dimensional (3D) RC beam-column joints with substandard detailing subjected to bidirectional loading regime. In this study, the results of a comprehensive experimental program is presented, aiming to show the effects of varying axial and bidirectional loading on the seismic performance of deficient exterior RC beam-column joints before and after retrofit. Ten exterior beam-column joint subassemblies are tested, including four as-built specimens and six retrofitted specimens using externally bonded glass fiber-reinforced polymer (GFRP) sheets. Test results are herein presented and conclusions are drawn on the basis of the observed global and local performance. The significance of the triaxial interaction of varying axial and bidirectional loading effects on the response of retrofitted corner joints is confirmed by the experimental findings. The proposed retrofit solution was shown to be capable of re-establishing an appropriate hierarchy of strength within the subassembly, protecting the panel zone region from shear failure while promoting the formation of a plastic hinge in the beam.  相似文献   

3.
Steel plate connections are frequently used in tilt-up and precast concrete building construction to tie adjacent wall panels together for shear and overturning effects, and to provide continuous diaphragm chord connections for wind and seismic loading. These welded connectors perform poorly in regions of high seismicity and are vulnerable to corrosion. Until now, retrofit and repair strategies for in-plane shear transfer strengthening were limited to attaching steel sections across panel edges. In the present paper, an experimental program is described that utilizes carbon fiber reinforced plastic (CFRP) composites to develop a viable retrofit scheme for precast concrete shear walls and diaphragms. Nine full-scale precast wall panel assemblies with CFRP composite connectors have been tested. The results show that the CFRP composite connection is an effective solution for the seismic retrofit and repair of precast concrete wall assemblies and other precast concrete elements, such as horizontal diaphragms, that require in-plane shear transfer strengthening.  相似文献   

4.
A one-fourth scale outrigger beam-column frame with as-built details was tested to assess its performance under reversed cyclic loading and to develop a retrofit procedure suitable for moderate seismic regions. The ductility of the as-built frame was limited due to pullout of poorly embedded positive moment reinforcement in the joint and shear inadequacy in the joint and beam. Strut-and-tie truss idealizations were developed to aid in predicting the failure mechanism and failure loads. Sectional and nonlinear finite-element analyses were used to predict the performance of the as-built outrigger frames. The retrofit procedure involved fiber-reinforced concrete sleeving of the beam and the joint, together with column jacketing, to enable plastic hinging and energy dissipation to occur in the column. This retrofit solution increased the strength, ductility, and energy absorption of the system. The provision of high-performance fiber-reinforced concrete in the beam sleeve was very effective in controlling the cracks and hence would improve durability.  相似文献   

5.
6.
The opportunities provided by the use of modern repair schemes for the seismic retrofit of existing RC structures were assessed on a comparative experimental study of carbon fiber-reinforced polymer (CFRP) and more-conventional seismic retrofitting techniques for the repair of reinforced concrete members and masonry walls of bare and infilled RC frames, respectively, damaged because of cyclic loading. Four 1-story, one-bay, one-third-scale frame specimens are tested under cyclic horizontal loading up to a drift level of 4%—two bare frames with spirals or stirrups as shear reinforcement, respectively, and two infilled frames with weak infills and spirals or stirrups as shear reinforcement, respectively. The applied repair techniques are mainly based on the use of thin epoxy resin infused under pressure into the crack system of the damaged RC joint bodies or on the additional use of CFRP plates to the surfaces of the damaged structural RC members as external reinforcement and the use of a polymer modified cement mortar or two-sided diagonal CFRP fabrics for the damaged infill masonry walls. After repair, specimens were retested in the same way. Conclusions concerning the comparison of the effectiveness between conventional and CFRP seismic retrofitting applied techniques on the basis of maximum cycles load, loading stiffness, and hysteretic energy absorption capabilities of the tested specimens are drawn.  相似文献   

7.
The U.S. Interstate 80 bridge over State Street in Salt Lake City is very near the Wasatch fault, which is active and capable of producing large earthquakes. The bridge was designed and built in 1965 according to the 1961 American Association of State Highway Officials specifications, which did not consider earthquake-induced forces or displacements. The bridge consists of reinforced concrete bents supporting steel plate welded girders. The bents are supported on cast-in-place concrete piles and pile caps. A seismic retrofit design was developed using carbon fiber reinforced polymer (CFRP) composites, which was implemented in the summer of 2000 and the summer of 2001, to improve the displacement ductility of the bridge. The seismic retrofit included column jacketing, as well as wrapping of the bent cap and bent cap-column joints for confinement, flexural, and shear strength increase. This paper describes the specifications developed for the CFRP composite column jackets and composite bent wrap. The specifications included provisions for materials, constructed thickness based on strength capacity, and an environmental durability reduction factor. Surface preparation, finish coat requirements, quality assurance provisions, which included sampling and testing, and constructability issues regarding the application of fiber composite materials in the retrofit of concrete bridges are also described.  相似文献   

8.
Masonry structures have demonstrated their seismic vulnerability during recent world seismic events. This paper investigates in-plane seismic performance of unreinforced masonry (URM) walls before and after they are retrofit using fiber-reinforced polymer (FRP) materials. An assessment of available design formulas for evaluating both the in-plane performance of URM walls and the contribution of FRP strengthening systems was performed. Walls with two configurations of the FRP reinforcement have been analyzed: one based on FRP strips installed parallel to the mortar joints, the other characterized by FRP strips arranged along the diagonals of the wall. Based on shear–compression tests carried out on FRP-strengthened masonry walls available in the literature, a comparison between theoretical and experimental data is performed. A discussion about the FRP strains at failure of the walls is provided and values of effective FRP strains to be used for design purposes are proposed.  相似文献   

9.
Repair, strengthening, and retrofit of reinforced and prestressed concrete members have become increasingly important issues as the World’s infrastructure deteriorates with time. Buildings and bridges are often in need of repair or strengthening to accommodate larger live loads as traffic and building occupancies change. In addition, inadequate design and detailing for seismic and other severe natural events has resulted in considerable structural damage and loss of life, particularly in reinforced concrete buildings. Numerous buildings and bridges suffer damage during such events and need to be repaired. The use of carbon fiber reinforced polymer (CFRP) composite fabric bonded to the surface of concrete members is comparatively simple, quick and virtually unnoticeable after installation. The use of composites has become routine for increasing both the flexural and shear capacities of reinforced and prestressed concrete beams. Earthquake retrofit of bridge and building structures has relied increasingly on composite wrapping of columns, beams and joints to provide confinement and increase ductility. This paper presents the results of cyclic testing of three large-scale reinforced concrete slab–column connections. Each of the specimens was a half-scale model of an interior slab–column connection common to flat-slab buildings. The specimens were reinforced according to ACI-318 code requirements and included slab shear reinforcement. While supporting a slab gravity load equivalent to dead load plus 30% of the live load, the specimens were subjected to an increasing cyclic lateral loading protocol up to 5% lateral drift. The specimens were subjected to the same loading protocol after they were repaired with epoxy crack sealers and CFRP sheet on the surfaces of the slab. Repair with epoxy and CFRP on the top surface of the slab was able to restore both initial stiffness and ultimate strength of the original specimen.  相似文献   

10.
Hollow bridge piers are currently being used in high-speed rail and highway projects in Taiwan. The flexural ductility and shear capacity of such piers with the configuration of lateral reinforcement used in Taiwan has recently been studied.?This paper reports that circular and rectangular hollow bridge piers retrofitted by carbon fiber-reinforced polymer (CFRP) sheets were tested under a constant axial load and a cyclic reversed horizontal load to investigate their seismic behavior, including flexural ductility, dissipated energy, and shear capacity. An analytical model is also developed to predict the moment-curvature relationship of sections and the lateral load-displacement relationship of piers. Based on the test results, the seismic behavior of such piers is presented. The test results are also compared with the proposed analytical model. It was found that the ductility factors of the tested piers ranged from 3.3 to 5.5 and that the proposed analytical model could predict the lateral load-displacement relationship of such piers with reasonable accuracy. All in all, CFRP sheets can effectively improve both the ductility factor and the shear capacity of hollow bridge piers.  相似文献   

11.
Fiber reinforced polymer (FRP) materials are currently produced in different configurations and are widely used for the strengthening and retrofitting of concrete structures and bridges. Recently, considerable research has been directed to characterize the use of FRP bars and strips as near surface mounted reinforcement, primarily for strengthening applications. Nevertheless, in-depth understanding of the bond mechanism is still a challenging issue. This paper presents both experimental and analytical investigations undertaken to evaluate bond characteristics of near surface mounted carbon FRP (CFRP) strips. A total of nine concrete beams, strengthened with near surface mounted CFRP strips were constructed and tested under monotonic static loading. Different embedment lengths were used to evaluate the development length needed for effective use of near surface mounted CFRP strips. A closed-form analytical solution is proposed to predict the interfacial shear stresses. The model is validated by comparing the predicted values with test results as well as nonlinear finite element modeling. A quantitative criterion governing the debonding failure of near surface mounted CFRP strips is established. The influence of various parameters including internal steel reinforcement ratio, concrete compressive strength, and groove width is discussed.  相似文献   

12.
In the case of heavily reinforced concrete structural members, bundled bars are required rather than spaced bars. The use of spliced bundled bars is necessary when available bar lengths are limited. No design recommendations regarding the use of bundled or spliced bundled FRP bars are available. The results of four-point flexural testing of nine concrete beams reinforced with spliced bundled CFRP bars are presented herein. The effects of the type of bundle and splice length on the bond strength of bundled CFRP bars are investigated. Based on the experimental results, a procedure for determining the critical splice length of FRP bars is presented and the corresponding values of bond stresses can be predicted. Moreover, the ultimate strength analysis method is used to predict the maximum stress in spliced bundled CFRP bars. Finally, comparisons with the existing recommendations regarding the use of bundled steel bars and the recommended modifications for bundled CFRP bars are presented.  相似文献   

13.
Their resistance to electro-chemical corrosion, high strength-to-weight ratio, larger creep strain, fatigue resistance, and nonmagnetic and nonmetallic properties make carbon fiber reinforced polymer (CFRP) composites a viable alternative to bonding of steel plates in repair and rehabilitation of reinforced concrete structures. The objective of this investigation is to study the effectiveness of externally bonded CFRP sheets or carbon fiber fabric in increasing the flexural strength of concrete beams. Four-point bending flexural tests were conducted up to failure on nine concrete beams strengthened with different layouts of CFRP sheets and carbon fiber fabric and on three beams with different layouts of anchored CFRP sheets. An analytical procedure, based on compatibility of deformations and equilibrium of forces, was presented to predict the flexural behavior of beams strengthened with CFRP sheets and carbon fiber fabric. Comparisons were made between the test results and the analytical calculations. The flexural strength was increased up to 58% on concrete beams strengthened with anchored CFRP sheets.  相似文献   

14.
This paper presents the results of an experimental investigation studying the effect of retrofitting interior slab–column connections against punching shear failure with externally bonded carbon fiber reinforced polymer (CFRP) strips. Six full-scale, 2000?mm-square×150-mm-thick slab specimens were constructed. The effect of varying the CFRP strengthening amount and configuration on the load-carrying capacity of the slab specimens was investigated. Specimens were supported along their edges and tested to failure. Strengthened slabs showed an increase in stiffness between 29 and 60% and in punching capacity between 6 and 16% with respect to the control unstrengthened slab. An analytical model was refined to predict the punching shear capacity of the specimens strengthened with CFRP strips. The model takes into account both the configuration and amount of CFRP strips. The proposed model shows good agreement with the experimental results.  相似文献   

15.
An experimental study is presented of the behavior of eight reinforced concrete bridge girders taken from a decommissioned Interstate bridge and retrofitted with three different carbon-fiber-reinforced polymer (CFRP) systems. Specimens were subjected to monotonic loading to failure with and without significant fatigue conditioning. Experimental observations indicated that intermediate crack-induced debonding was the dominant failure mode for monotonically loaded beams and that degradation of the CFRP-to-concrete interface was caused by fatigue conditioning. Conventional adhesive applied and near-surface mounted (NSM) CFRP systems behaved well under monotonic loads, with the NSM system exhibiting significantly greater ductility. Powder actuated fastener applied retrofit was observed to be less efficient, requiring a relative slip of the CFRP in order to engage the shear transfer mechanism of the fasteners. The application of current accepted design guidelines for FRP retrofit indicated that guidelines aimed at mitigating debonding failure appear to be appropriately conservative under monotonic loading conditions; however, a significant additional reduction in CFRP strain limits is required to account for even small levels of fatigue loading.  相似文献   

16.
Fiber-reinforced polymer (FRP) composite materials have been widely used in the field of retrofitting. Theoretical analysis of FRP plate- or sheet-strengthened cracked concrete beams is necessary for estimating service reliability of the structural members. In previous studies, the effect of a perfectly bonded FRP plate or sheet was equivalent to a cohesive force acting at the bottom of crack to delay the crack propagation in concrete and reduce the crack width. However, delamination between FRP and cracked beam is inevitable due to interfacial shear stress concentration at the bottom of crack. The intention of this paper is to present an analytical solution for fracture analysis of carbon FRP (CFRP) sheet–strengthened cracked concrete beams by considering both vertical crack propagation in concrete and interfacial debonding at CFRP-concrete interface. The interfacial debonding is modeled as the interfacial shear crack propagation in this paper. Four different stages are discussed after initial cracking state of the concrete. At the first stage, only fictitious crack propagation occurs in the concrete. At the second stage, macrocrack propagates in the concrete without interfacial debonding. At the third stage, both vertical macrocrack propagation in the concrete and horizontal shear crack propagation at the CFRP-concrete interface occur in the strengthened beam. The tensile stress in the CFRP sheet and interfacial shear stress along the span are formulated based on the deformation compatibility condition at the CFRP-concrete interface at this stage. Finally, macroshear crack propagates at the interface until the CFRP sheet is completely peeled out from the beam, and then the member is fractured. The applied load is determined as a function of the referred two crack lengths at different stages. At the beginning, the applied load increases to one peak value with the full propagation of fictitious crack at the first stage. At the third stage, the applied load is improved to another peak value due to the relatively high cohesive effect of the CFRP sheet. Then the two peak values are determined by the Lagrange multiplier method. The validity of the proposed analytical solution is verified with the experimental results and numerical simulations. It can be concluded that the proposed analytical solution can predict the load-bearing capacity of CFRP sheet-strengthened cracked concrete beams with reasonable accuracy.  相似文献   

17.
Experiments were conducted to study the effect of using epoxy mortar patch end anchorages on the flexural behavior of reinforced concrete beams strengthened with carbon fiber-reinforced polymer (CFRP) sheets. More specifically, the effect of the end anchorage on strength, deflection, flexural strain, and interfacial shear stress was examined. The test results show that premature debonding failure of reinforced concrete beams strengthened with CFRP sheet can be delayed or prevented by using epoxy mortar patch end anchorages. A modified analytical procedure for evaluating the flexural capacity of reinforced concrete beams strengthened with CFRP sheets and epoxy mortar end anchorage is developed and provides a good prediction of test results.  相似文献   

18.
Shear failure is catastrophic and occurs usually without advance warning; thus it is desirable that the beam fails in flexure rather than in shear. Many existing reinforced concrete (RC) members are found to be deficient in shear strength and need to be repaired. Externally bonded reinforcement such as carbon-fiber-reinforced polymer (CFRP) provides an excellent solution in these situations. To investigate the shear behavior of RC beams with externally bonded CFRP shear reinforcement, 11 RC beams without steel shear reinforcement were cast at the concrete laboratory of the New Jersey Institute of Technology. After the beams were kept in the curing room for 28?days, carbon-fiber strips and fabrics made by Sika Corp. were applied on both sides of the beams at various orientations with respect to the axis of the beam. All beams were tested on a 979?kN (220?kips) MTS testing machine. Results of the test demonstrate the feasibility of using an externally applied, epoxy-bonded CFRP system to restore or increase the shear capacity of RC beams. The CFRP system can significantly increase the serviceability, ductility, and ultimate shear strength of a concrete beam; thus, restoring beam shear strength by using CFRP is a highly effective technique. An analysis and design method for shear strengthening of externally bonded CFRP has been proposed.  相似文献   

19.
Concrete columns requiring strengthening intervention always contain a certain percentage of steel hoops. Applying strips of wet layup carbon fiber-reinforced polymer (CFRP) sheets inbetween the existent steel hoops might, therefore, be an appropriate confinement technique with both technical and economic advantages, when full wrapping of a concrete column is taken as a basis of comparison. To assess the effectiveness of this discrete confinement strategy, circular cross-sectional concrete elements confined by distinct arrangements of strips of CFRP sheet are submitted to a direct compression load up to the failure point. The influence of the width of the strip, distance between strips, number of CFRP layers per strip, CFRP stiffness, and concrete strength class on the increase of the load carrying capacity and ductility of concrete columns, is evaluated. An analytical model is developed to predict the compressive stress-strain relationship of concrete columns confined by discrete and continuous CFRP arrangements. The main results of the experimental program are presented and analyzed and used to assess the model performance.  相似文献   

20.
For reinforced concrete beams with the same shear and flexural reinforcements, shear failure is most likely to occur in deep beams rather than in regular beams. Thus, retrofitting of deep beams with shear deficiencies is of great importance. Externally bonded reinforcement such as carbon fiber reinforced polymer (CFRP) provides an excellent solution in these situations. In order to investigate the shear behavior of deep beams with externally bonded CFRP shear reinforcement, 16 deep beams without steel shear reinforcement were cast at the concrete laboratory of New Jersey Institute of Technology. After the beams were kept in the curing room for 28 days, carbon fiber strips and fabrics were applied outside of the beams at various orientations with respect to the axis of the beam. All beams were tested on a 979?kN (220?kip) MTS testing machine. Results of test demonstrate the feasibility of using externally applied, epoxy-bonded CFRP system to restore or increase the shear capacity of deep beams. The CFRP system can significantly increase the serviceability, ductility, and ultimate shear strength of a concrete beam, thus restoring deep beam shear strength using CFRP is a highly effective technique. An analysis and design method for shear strengthening of deep beams using externally bonded CFRP has also been proposed as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号