首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Field Static Load Test on Kao-Ping-Hsi Cable-Stayed Bridge   总被引:1,自引:0,他引:1  
Field load testing is an effective method for understanding the behavior and fundamental characteristics of a cable-stayed bridge. This paper presents the results of field static load tests on the Kao-Ping-Hsi cable-stayed bridge, the longest cable-stayed bridge in Taiwan, before it was open to traffic. A total of 40 loading cases, including the unit and distributed bending and torsion loading effects, were conducted to investigate the bridge behavior. The atmospheric temperature effect on the variations of the main girder deflections was also monitored. The results of static load testing include the main girder deflections, the flexural strains of the prestressed concrete girder, and the variations of the cable forces. A three-dimensional finite-element model was developed. The results show that the bridge under the planned load test conditions has linear superposition characteristics and the analytical model shows a very good agreement with the bridge responses. Further discussion of deflection and cable forces of the design specifications for a cable-stayed bridge is also presented.  相似文献   

2.
The American Association of State Highway and Transportation Officials (AASHTO) specifications provide formulas for determining live load distribution factors for bridges. For load distribution factors to be accurate, the behavior of the bridge must be understood. While the behavior of right-angle bridges and bridges with limited skews is relatively well understood, that of highly skewed bridges is not. This paper presents a study aimed at developing a better understanding of the transverse load distribution for highly skewed slab-on-steel girder bridges. The study involved both a diagnostic field test of a recently constructed bridge and an extensive numerical analysis. The bridge tested and analyzed is a two-span, continuous, slab-on-steel composite highway bridge with a skew angle of 60°. The bridge behavior is defined based on the field test data. Finite-element analyses of the bridge were conducted to investigate the influence of model mesh, transverse stiffness, diaphragms, and modeling of the supports. The resulting test and analytical results are compared with AASHTO’s Load and Resistance Factor Design formulas for live load distribution to assess the accuracy of the current empirical formulas.  相似文献   

3.
This work describes some of the most important results of the experimental and numerical analyses of Escaleritas Viaduct, Spain. Before the inauguration of this composite cable-stayed bridge in 2006, the bridge authority required a dynamic load test identifying, for instance, the natural vibration modes, the dynamic magnification factor, and the maximum vertical acceleration. The dynamic test was accompanied by numerical simulation performed in two different three-dimensional finite-element models, one of them composed of 145,000 shell elements. The correlation of test and analysis data is good and allows several interesting general conclusions to be drawn. It is shown that Escaleritas Viaduct complies with the requirements on the dynamic structural behavior defined in the standards.  相似文献   

4.
This paper presents issues in the design concept, analysis, and test results of a harp-shaped single span cable-stayed bridge, Hongshan Bridge, located in Changsha, Hunan Province, China. The bridge has a 206 m span, with a pylon inclined at 58° from the horizontal and 13 pairs of parallel cable stays without a back?stay. This paper discusses the design approach for the main components of the bridge. Emphasis will be put on the following three aspects. First, the weight of the pylon and all dead loads of the main girder in addition to part of the live loads must be in a balanced condition. Second, the main girder should be an orthotropic steel-concrete composite box girder because of the superior safety and weight reduction of this type of structure. Third, the cable?stays should be anchored at the neutral axis of the pylon to prevent the development of high secondary moments caused by other anchor approaches. Furthermore, based on results from tests carried out on three models, namely, scaled full model tests in a scale of 1:30, scaled section model tests in a scale of 1:6, and wind tunnel tests, the following four key issues were studied: (1) the local stability of orthotropic steel-concrete composite box girder subjected to combined bending and axial loads; (2) the characteristics under loads of 13-m-long cantilever beams; (3) the safety of the bridge under some other dangerous conditions; and (4) the characteristics of wind resistance and wind tunnel testing.  相似文献   

5.
A new simplified contact model aimed at capturing the load transfer and recovery length in parallel steel wires, commonly used in main cables of suspension bridges, is presented. The approach is based on placing elastic–perfectly plastic spring elements at the contact region between the objects. These springs have varying stiffness (Model?I) or yielding (Model?II) depending on their proximity to the clamping loads. Their stiffness or yielding is highest when they are closer to this force, and it decays when they are farther away from the clamp. This decayed behavior is assigned according to Boussinesq’s well-known solution to a point load (applied on a half space). Both models converge quickly compared with a full contact model and recover Coulomb friction law on a two-dimensional (2D) benchmark problem. Moreover, when the same properties are chosen for all springs (disregarding Boussinesq solutions), the models reduce to the classical shear-lag model, which for high clamping (point) loads gives inaccurate results. The spring models are validated experimentally on a seven-wire tightened strand. In this case study, the outer wires are axially pulled, whereas the middle wire, slightly shorter than the outer wires, experiences no direct applied axial load. However, because the strand is radially fastened at several locations, the axial load is transferred to the inner wire by an interfriction mechanism between the wires. The strains at the center points of the outer and inner wires are measured via neutron diffraction for different clamping loads, showing that the inner wire is capable of recovering most of the load.  相似文献   

6.
Field tests conducted on a noncomposite steel girder bridge are described. Two separate 36.6 m (120 ft) units, each three-span continuous, were subjected to increasing static loads by means of a trailer and concrete barriers. Results show that the girders acted as partially composite sections in the positive moment region up to the onset of yield. Due to curb participation and the transverse location of the applied load, exterior girders exhibited a higher degree of partially composite action. In the negative moment region, partially composite action was evident only in the exterior girders. As a result of partially composite action and curb participation, the yield load was about 7% higher than predicted. Bearing restraint is shown not to have a significant impact on the behavior of the tested bridges. In addition, the stiffness of the interior girders, as measured under the constant weight of a dump truck, are shown to be virtually unaffected by the heavy trailer loads. More significant changes in girder stiffness were observed between different transverse load positions of the dump truck.  相似文献   

7.
In bridge engineering, the three-dimensional behavior of a bridge system is usually reduced to the analysis of a T-beam section, loaded by an equivalent fraction of the applied live load, which is called the live load distribution factor (LDF). The LDF is defined in the both the AASHTO Standard Specifications and the LRFD Specifications primarily for concrete slabs and has inherent applicable limitations. This paper provides explicit formulas using series solutions for LDF of orthotropic bridge decks, applicable to various materials but intended for fiber-reinforced polymer (FRP) decks. The present formulation considers important parameters that represent the response characteristics of the structure that are often omitted or limited in the AASHTO Specifications. A one-term series solution is proposed based on the macroflexibility approach, in which the bridge system is simplified into two major components, deck and stringers. The governing equations for the two components are obtained separately, and the deflections and interaction forces are solved by ensuring displacement compatibility at stringer lines. The LDF is calculated as the ratio of the single stringer interaction force to the summation of total stringer interaction forces. To verify this solution, a finite-element (FE) parametric study is conducted on 66 simply supported concrete slab-on-steel girder bridges. The results from the series solution correlates well with the FE results. It is also illustrated that the series solution can be applied to predict LDF for FRP deck-on-steel girder bridges, by favorable comparisons among the analytical, FE, and testing results for a one-third-scale bridge model. The scale test specimen consists of an FRP sandwich deck attached to steel stringers by a mechanical connector. The series solution is further used to obtain multiple regression functions for the LDF in terms of nondimensional variables, which can be used for simplified design purposes.  相似文献   

8.
In New Mexico, many reinforced concrete slab (RCS) bridges provide service on interstates I-10, I-25, and I-40. The load rating for this type of bridge largely depends on the live-load moment in the slab. Consequently, the objective of this study was to determine a more accurate value for the equivalent strip width using higher level evaluation techniques. A continuous RCS bridge was evaluated starting with an AASHTO load and resistance factor rating analysis. A diagnostic test was then conducted to measure live-load strains which showed that the slab stiffness fit within cracked and gross section behavior. Furthermore, slab moments from finite element analysis agreed reasonably well with experimental moments derived using the average of the cracked and gross section modulus. From refined analysis, the equivalent strip widths for positive moment were 26.1 and 22.1% greater than those calculated by the AASHTO approximate method for the exterior and interior spans, respectively. The refined widths for negative moment were greater than AASHTO by 13.1 and 11.1%. This increase in the equivalent strip width reduced the live-load effects, which proportionally increased the rating factors.  相似文献   

9.
This paper describes the feasibility of 1,400 m steel cable-stayed bridges from both structural and economic viewpoints. Because the weight of a steel girder strongly affects the total cost of the bridge, the writers present a procedure to obtain a minimum weight for a girder that ensures safety against static and dynamic instabilities. For static instability, elastoplastic, finite-displacement analysis under in-plane load and elastic, finite-displacement analysis under displacement-dependent wind load are conducted; for dynamic instability, multimodal flutter analysis is carried out. It is shown that static critical wind velocity of lateral torsional buckling governs the dimension of the girder. Finally, the writers briefly compare a cable-stayed bridge with suspension bridge alternatives.  相似文献   

10.
This paper describes the development of a numerical model to simulate the dynamic response of the bridge–vehicle system of Salgueiro Maia cable-stayed bridge, using the results from an extensive experimental investigation to calibrate this model. Further, a set of stochastic Monte Carlo simulations of the bridge–vehicle dynamic response is also presented, with the purpose of evaluating dynamic amplification factors, taking into account the randomness of different factors associated to characteristics of the pavement, of the vehicles and of the traffic flow.  相似文献   

11.
Current bridge design and rating techniques are based at the component level and thus cannot predict the ultimate capacity of bridges, which is a function of system-level interactions. While advances in computer technology have made it possible to conduct accurate system-level analyses, which can be used to design more efficient bridges and produce more accurate ratings of existing structures, the knowledge base surrounding system-level bridge behavior is still too small for these methods to be widely considered reliable. Thus, to advance system-level design and rating, a 1/5-scale slab-on-steel girder bridge was tested to ultimate capacity and then analytically modeled. The test demonstrated the significant reserve capacity of the steel girders, and the response of the specimen was governed by the degradation of the reinforced-concrete deck. To accurately capture the response of the specimen in an analytical model, the degradation of the deck and other key features of the specimen were modeled by using a dynamic analysis algorithm in a commercially available finite-element analysis program ABAQUS.  相似文献   

12.
The AASHTO LRFD load distribution factor equation was developed based on elastic finite element analysis considering only primary members, i.e., the effects of secondary elements such as lateral bracing and parapets were not considered. Meanwhile, many bridges have been identified as having significant cracking in the concrete deck. Even though deck cracking is a well-known phenomenon, the significance of pre-existing cracks on the live load distribution has not yet been assessed. The purpose of this research is to investigate the effect of secondary elements and deck cracking on the lateral load distribution of girder bridges. First, secondary elements such as diaphragms and parapets were modeled using the finite element method, and the calculated load distribution factors were compared with the code-specified values. Second, the effects of typical deck cracking and crack types that have a major effect on load distribution were identified through a number of nonlinear finite element analyses. It was established that the presence of secondary elements may produce load distribution factors up to 40% lower than the AASHTO LRFD values. Longitudinal cracking was found to increase the load distribution factor by up to 17% when compared to the LRFD value while the transverse cracking was found to not significantly influence the transverse distribution of moment.  相似文献   

13.
The most popular type of bridge in service today is the concrete deck on steel-girder composite bridge. A finite-element model is built to analyze the superstructure of this type of bridge under working load conditions. The deflections along a test bridge are computed by using this method; the results obtained are close to the experimental data. The concrete deck of the bridge is analyzed using nonlinear finite elements, of which the analytical procedure is described in detail. A comparison is also made between this method and the traditional transformed area method.  相似文献   

14.
Due to limited resources, structural health monitoring (SHM) of highway bridges has to be integrated in structural performance assessment in a cost-effective manner. The instrumentation and the long-term SHM procedures are generally chosen with emphasis on most critical bridge components for a particular failure mode. However, global structural analysis is necessary to obtain useful structural performance information. It is then a major challenge to use monitoring data at some locations to perform a structural reliability analysis at other locations. In this paper, a methodology for lifetime serviceability analysis of existing steel girder bridges including crawl tests and long-term monitoring information is presented. The case where the initial goal of monitoring is to provide data for a fatigue analysis of some bridge components is considered. The monitoring results are used to perform a structural reliability analysis of different sections that are critical considering serviceability of the bridge. Limit state equations are used firstly by adhering to the load and strength formulas and requirements set forth in AASHTO specifications, and secondly by integrating monitoring information. Serviceability with respect to permanent deformation under overload is estimated for the girders with these two different methods and a time-dependent performance analysis is conducted by considering corrosion penetration. The proposed approach is applied to the I-39 Northbound Bridge over the Wisconsin River in Wisconsin. A monitoring program of that bridge was performed by the Advanced Technology for Large Structural Systems Center at Lehigh University.  相似文献   

15.
Secondary elements such as barriers, sidewalks, and diaphragms may affect the distribution of live load to bridge girders. The objective of this study is to evaluate their effect on girder reliability if these elements are designed to be sufficiently attached to the bridge so as not to detach under traffic live loads. Simple-span, two-lane structures are considered, with composite steel girders supporting a reinforced concrete deck. Several representative structures are selected, with various configurations of barriers, sidewalks, and diaphragms. Bridge analysis is performed using a finite-element procedure. Load and resistance parameters are treated as random variables. Random variables considered are composite girder flexural strength, secondary element stiffness, load magnitude (dead load and truck traffic live load), and live load position. It was found that typical combinations of secondary elements have a varying influence on girder reliability, depending on secondary element stiffness and bridge geometry. Suggestions are presented that can account for secondary elements and that provide a uniform level of reliability to bridge girders.  相似文献   

16.
This paper focuses on the behavior of skewed concrete bridge decks on steel superstructure subjected to truck wheel loads. It was initiated to meet the need for investigating the role of truck loads in observed skewed deck cracking, which may interest bridge owners and engineers. Finite-element analysis was performed for typical skewed concrete decks, verified using in?situ deck strain measurement during load testing of a bridge skewed at 49.1°. The analysis results show that service truck loads induce low strains/stresses in the decks, unlikely to initiate concrete cracking alone. Nevertheless, repeated truck wheel load application may cause cracks to become wider, longer, and more visible. The local effect of wheel load significantly contributes to the total strain/stress response, and the global effect may be negligible or significant, depending on the location. The current design approach estimates the local effect but ignores the global effect. It therefore does not model the situation satisfactorily. In addition, total strain/stress effects due to truck load increase slightly because of skew angle.  相似文献   

17.
The effectiveness of posted load limits in reducing annual maximum live load effects, thus enhancing bridge reliability, is investigated for 12 and 40 m simple span highway bridges. Novel analytical expressions are derived for event gross vehicle weight (GVW) distributions that account for violation of posted load restrictions, and the corresponding annual maximum GVW distributions are presented. Annual reliability indices associated with load restrictions computed using typical bridge posting criteria and different compliance levels are compared to the target reliability index. For the case of perfect compliance, a posted load restriction can significantly reduce maximum annual live load effects and so enhance the reliability. Under imperfect compliance, however, a violation rate as low as 2.5% (i.e., one illegal truck in 40 ignores the posting) causes the mean value and variability of the annual maximum live load effect distribution to increase significantly, resulting in a significant loss in reliability. Thus, unless posted loads are strictly enforced, the effectiveness of enhancing existing bridge reliability with a posted load restriction is questionable.  相似文献   

18.
This paper summarizes field-testing of eight decked bulb-tee girder bridges as well as development of three-dimensional finite-element (FE) models. Using the calibrated 3D FE models, parametric studies have been performed to study the effect of shear connectors and intermediate diaphragms on live-load distribution and connector forces. It was found that: (1) in all cases studied, the live- load distribution factor (DF) for a single-lane loaded bridge was smaller than one for a double-lane loaded bridge; (2) connector forces caused by wheel loads were not uniform along the longitudinal joint—adding intermediate diaphragms tended to reduce the difference among horizontal shear forces in connectors; (3) the maximum horizontal shear force increased with the increase of the connector spacing—intermediate diaphragms reduced the maximum horizontal shear force in connectors; (4) the maximum vertical shear force and in-plane normal tensile force in connectors do not necessarily increase with the increase of the connector spacing; and (5) the summation of connector forces in each direction along the longitudinal joint remained constant irrespective of the number of connectors in the joint.  相似文献   

19.
The system identification and vibration control of a cable-stayed bridge are considered difficult to achieve due to the bridge’s structural complexity and system uncertainties. In this paper, based on the concept of decentralized information structures, a decentralized, nonparametric identification and control algorithm with neural networks is proposed for the purpose of suppressing the vibration of a documented six-cable-stayed bridge model induced by earthquake excitations. The control strategy proposed here uses the stay cables as active tendons to provide control forces through appropriate actuators. Each individual actuator is controlled by a decentralized neurocontroller that only uses local information. The feature of decentralized control simplifies the implementation of the control algorithms and makes decentralized control easy to practice and cost effective. The effectiveness of the decentralized identification and control algorithm based on neural networks is evaluated through numerical simulations. And the adaptability of the decentralized neurocontrollers for different kinds of earthquake excitations and for a damaged cable-stayed bridge model is demonstrated via numerical simulations.  相似文献   

20.
Bridge Safety Evaluation Based on Monitored Live Load Effects   总被引:1,自引:0,他引:1  
A novel approach to evaluating safety of existing bridges based on monitored structural responses and component conditions is presented in this paper. A limit state equation is developed for the measured strain data from structural health monitoring (SHM). The new concepts of the condition function, α(s,t), and prediction function, ζ(s,t), are introduced. The condition function is utilized to estimate the strains at locations other than the strain gauge locations. This function is related to the structural condition assessment results, strain gauge locations, and failure modes under consideration. The prediction function is used to predict the extreme values of the SHM data in the future. An illustration of the proposed approach is provided on an existing highway bridge in Pennsylvania, which had been monitored from 2001 to 2005 by the Advanced Technology for Large Structural Systems Center, a National Engineering Research Center at Lehigh University, Bethlehem, Pa. This study provides the basis for integrating achievable SHM data into structural safety evaluation, and establishes a valid platform for life-cycle, cost-oriented, and reliability-based infrastructure management systems using structural health monitoring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号