首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Slender long-span bridges exhibit unique features which are not present in short and medium-span bridges such as higher traffic volume, simultaneous presence of multiple vehicles, and sensitivity to wind load. For typical buffeting studies of long-span bridges under wind turbulence, no traffic load was typically considered simultaneously with wind. Recent bridge/vehicle/wind interaction studies highlighted the importance of predicting the bridge dynamic behavior by considering the bridge, the actual traffic load, and wind as a whole coupled system. Existent studies of bridge/vehicle/wind interaction analysis, however, considered only one or several vehicles distributed in an assumed (usually uniform) pattern on the bridge. For long-span bridges which have a high probability of the presence of multiple vehicles including several heavy trucks at a time, such an assumption differs significantly from reality. A new “semideterministic” bridge dynamic analytical model is proposed which considers dynamic interactions between the bridge, wind, and stochastic “real” traffic by integrating the equivalent dynamic wheel load (EDWL) approach and the cellular automaton (CA) traffic flow simulation. As a result of adopting the new analytical model, the long-span bridge dynamic behavior can be statistically predicted with a more realistic and adaptive consideration of combined loads of traffic and wind. A prototype slender cable-stayed bridge is numerically studied with the proposed model. In addition to slender long-span bridges which are sensitive to wind, the proposed model also offers a general approach for other conventional long-span bridges as well as roadway pavements to achieve a more realistic understanding of the structural performance under probabilistic traffic and dynamic interactions.  相似文献   

2.
It has been argued that the AASHTO LRFD design code for maximum live loads on highway bridges is overly conservative. In an attempt to determine the level of conservativeness, if any, the writers developed a methodology incorporating real-time visual data collection from traffic cameras coupled with structural strain response of girder bridges. Average daily truck traffic along with frequency of multiple presences (same lane as well as adjacent lanes) and lane-wise truck traffic distribution were estimated for a steel-girder highway bridge on I-95 in Delaware. These data compared well with predictions from a Poisson process based model developed for this study. Statistical properties of girder moments in single and multiple presence conditions were determined as well. In this particular example, the girder design moment on the 24.6?foot approach span according to AASHTO specifications was found to be about 3.5 times higher than that estimated from the in-service data.  相似文献   

3.
This paper presents the results of a parametric study related to the wheel load distribution in one-span, simply supported, multilane, reinforced concrete slab bridges. The finite-element method was used to investigate the effect of span length, slab width with and without shoulders, and wheel load conditions on typical bridges. A total of 112 highway bridge case studies were analyzed. It was assumed that the bridges were stand-alone structures carrying one-way traffic. The finite-element analysis (FEA) results of one-, two-, three-, and four-lane bridges are presented in combination with four typical span lengths. Bridges were loaded with highway design truck HS20 placed at critical locations in the longitudinal direction of each lane. Two possible transverse truck positions were considered: (1) Centered loading condition where design trucks are assumed to be traveling in the center of each lane; and (2) edge loading condition where the design trucks are placed close to one edge of the slab with the absolute minimum spacing between adjacent trucks. FEA results for bridges subjected to edge loading showed that the AASHTO standard specifications procedure overestimates the bending moment by 30% for one lane and a span length less than 7.5 m (25 ft) but agrees with FEA bending moments for longer spans. The AASHTO bending moment gave results similar to those of the FEA when considering two or more lanes and a span length less than 10.5 m (35 ft). However, as the span length increases, AASHTO underestimates the FEA bending moment by 15 to 30%. It was shown that the presence of shoulders on both sides of the bridge increases the load-carrying capacity of the bridge due to the increase in slab width. An extreme loading scenario was created by introducing a disabled truck near the edge in addition to design trucks in other lanes placed as close as possible to the disabled truck. For this extreme loading condition, AASHTO procedure gave similar results to the FEA longitudinal bending moments for spans up to 7.5 m (25 ft) and underestimated the FEA (20 to 40%) for spans between 9 and 16.5 m (30 and 55 ft), regardless of the number of lanes. The new AASHTO load and resistance factor design (LRFD) bridge design specifications overestimate the bending moments for normal traffic on bridges. However, LRFD procedure gives results similar to those of the FEA edge+truck loading condition. Furthermore, the FEA results showed that edge beams must be considered in multilane slab bridges with a span length ranging between 6 and 16.5 m (20 and 55 ft). This paper will assist bridge engineers in performing realistic designs of simply supported, multilane, reinforced concrete slab bridges as well as evaluating the load-carrying capacity of existing highway bridges.  相似文献   

4.
Past research has been conducted on the behavior of horizontally curved girders by testing scaled models and full-scale laboratory bridges and by analyzing numerical models. Current design specifications are based on this past research; however, little field data of in-service bridges exist to support the findings of the past research on which the current design criteria are based. The purpose of the present study was to gather field response data from three in-service, curved, steel I-girder bridges to determine behavior when subjected to a test truck and normal truck traffic. Transverse bending distribution factors and dynamic load allowance were calculated from the data collected. Numerical grillage models of the three bridges were developed to determine if a simple numerical model will accurately predict actual field measured transverse bending distribution, deflections, and cross-frame and diaphragm shear forces. The present study found that AASHTO specifications are conservative for both dynamic load allowance and transverse bending moment distribution. The grillage models were found to predict with reasonable accuracy the behavior of a curved I-girder bridge.  相似文献   

5.
The dynamic response of highway bridges subjected to moving truckloads has been observed to be dependent on (1) dynamic characteristics of the bridge; (2) truck configuration, speed, and lane position on the bridge; and (3) road surface roughness profile of the bridge and its approach. Historically, truckloads were measured to determine the load spectra for girder bridges. However, truckload measurements are either made for a short period of time [for example, weigh-in-motion (WIM) data] or are statistically biased (for example, weigh stations) and cost prohibitive. The objective of this paper is to present results of a 3D computer-based model for the simulation of multiple trucks on girder bridges. The model is based on the grillage approach and is applied to four steel girder bridges tested under normal truck traffic. Actual truckload data collected using a discrete bridge WIM system are used in the model. The data include axle loads, truck gross weight, axle configuration, and statistical data on multiple presence (side by side or following). The results are presented as a function of the static and dynamic stresses in each girder and compared with code provisions for dynamic load factor. The study provides an alternate method for the development of live-load models for bridge design and evaluation.  相似文献   

6.
A new fatigue load model has been developed based on weigh-in-motion (WIM) data collected from three different sites in Indiana. The recorded truck traffic was simulated over analytical bridge models to investigate moment range responses of bridge structures under truck traffic loadings. The bridge models included simple and two?equally continuous spans. Based on Miner’s hypothesis, fatigue damage accumulations were computed for details at various locations on the bridge models and compared with the damage predicted for the 240-kN (54-kip) American Association of State Highway and Transportation Officials (AASHTO) fatigue truck, a modified AASHTO fatigue truck with an equivalent effective gross weight, and other fatigue truck models. The results indicate that fatigue damage can be notably overestimated in short-span girders. Accordingly, two new fatigue trucks are developed in the present study. A new three-axle fatigue truck can be used to represent truck traffic on typical highways, while a four-axle fatigue truck can better represent truck traffic on heavy duty highways with a significant percentage of the fatigue damage dominated by eight- to 11-axle trucks.  相似文献   

7.
A primary means of demonstrating the feasibility and effectiveness of fiber-reinforced polymer (FRP) composite bridge materials is via in situ bridge load testing. For this study, the prescribed or assumed design factors for each of the study bridges were compared to those exhibited by the performance of the bridge. Specifically, the wheel load distribution factors and impact factors as defined by AASHTO were considered in order to assess the load transfer and distribution in structures utilizing FRP panels. The in situ testing configurations for the study bridges are outlined, including the truck and instrumentation placement to obtain the desired information. Furthermore, comparisons were drawn between the design values for deflection and those experienced by the structures during testing. It was found that although the deflections exhibited by the bridges were well within the design limits, further research is needed to be able to prescribe bridge design factors for FRP panels.  相似文献   

8.
Overweight vehicles require permits to cross the highway bridges, which are designed for “design load vehicles” (prescribed in the national standards). A new, fast, and robust method is presented for the verification of bridges, which requires minimal input only: the axle loads, axle spacing, the bridge span(s), and the superstructure type. The bridge can be a single or a multispan girder, an arch bridge, a frame structure, or a box girder. The overweight vehicle may operate within regular traffic or it may cross the bridge at a given lane position while other traffic is prohibited on the bridge. The method is illustrated by numerical examples for deck-girder bridges and for a box girder.  相似文献   

9.
Since the first edition of the AASHTO Guide Specifications for Horizontally Curved Steel Girder Highway Bridges was published in 1980, there have been two more editions including many revisions to the specifications. Some changes were based on valid research results and others were based on limited or uncertain research results and information. The current edition of the specifications contains provisions that may result in unreasonably conservative load capacity ratings. In this paper, the results of field tests and analyses conducted on the Veterans’ Memorial curved steel-box girder bridge are discussed. Test and analytical results show: (1) current AASHTO guide specifications regarding the first transverse stiffener spacing at the simple end support of a curved girder may be too conservative for bridge load capacity ratings; (2) current AASHTO guide specifications may greatly overestimate the dynamic loadings of curved box girder bridges with long span lengths; and (3) a plane grid finite-element model of about 20 elements per span in the longitudinal direction can be used to analyze curved multigirder bridges with external bracings located only over supports. The research results are instructive and applicable to bridge design and bridge load-rating activities.  相似文献   

10.
Truck weight-limit regulations have significant influence on truck operating weights. These regulations directly influence loads applied to highway facilities, such as bridges and pavements. “Truck weight” herein collectively refers to a vehicle’s gross weight, axle weights, and axle configuration. Truck load spectra as a result of truck weight limits are important to bridge engineering in many respects, such as that of determining requirements for evaluation and design of bridges for both strength and fatigue. This paper’s objective is to present a new method for predicting truck weight spectra resulting from a change in truck weight limits. This method is needed to estimate impacts of the change on highway bridges such as accelerated fatigue accumulation. Historical and recent truck weight data are used to test and illustrate the proposed method, and the results show its good prediction capability. This method is also applied here to an example of estimating the impact on steel bridge fatigue due to a possible increase in the gross-vehicle-weight limit from 356 kN (80 kips) on five axles to 431 kN (97 kips) on six axles. Also included is an investigation of the AASHTO fatigue truck model for steel bridge evaluation. Results show that the current fatigue truck model may become invalid under the studied scenario of truck weight-limit increase.  相似文献   

11.
As is well known, long, suspended bridge spans require, in the design stage, careful study of their resistance and response to site winds. This has driven, on the one hand, detailed quantitative observation of bridge models in the wind tunnel and, on the other, a steady development and refinement of parallel theory. Currently, both aspects have arrived at good stages of sophistication, although with continued room for improvement. Successes in the extension of bridge spans to record-breaking lengths are mainly due to progress in wind-resistant design, a primary component in the design of long-span bridges. Recently, multimode flutter and buffeting analysis procedures have been developed. These procedures, which were based centrally on frequency-domain methods, take into account the fully coupled aeroelastic and aerodynamic response of long-span bridges to wind excitation. This paper briefly reviews the current state of the art in long-span bridge wind analysis, emphasizing the analytical infrastructure. The focus then turns to exhibit an example of application of the theory to the stability (flutter) and serviceability (buffeting) analyses of a new long-span bridge in North America. This example not only demonstrates the application of the theory to a real structure but also serves to highlight some insights into the versatility that is gained by this analytically based approach. The results demonstrate that the analytical method with appropriate inputs and a complementary full-bridge model agree even for relatively unusual incoming turbulence in the flow caused by the presence of structures upstream of the bridge. This paper seeks to exhibit recent developments in the field to the interested structural∕bridge engineer, outline alternative procedures available for assessment of wind effects on cable-supported bridges, and provide an overview of the basic steps in the process of a typical aerodynamic analysis and design.  相似文献   

12.
With the aging of existing steel bridges and the accumulated stress cycles under traffic loads, assessment of remaining fatigue life for continuing service has become more important than ever, especially for decisions on structure replacement, deck replacement, or other major retrofits. Experience from engineering practice indicates that fatigue analysis based on specification loads and distribution factors usually underestimates the remaining fatigue life of existing bridges by overestimating the live load stress ranges. Fatigue evaluation based on field-measured stress range histograms under actual traffic load proves to be a more accurate and efficient method for existing bridges. This paper describes the application of such a method in assessing the remaining fatigue life of bridge structures. Current AASHTO specifications for fatigue evaluation of existing bridges are reviewed and compared. Case studies of three major highway bridges are discussed. Finally, a procedure is proposed for evaluating fatigue life of existing bridges through field strain measurement.  相似文献   

13.
Fiber reinforced polymer (FRP) composite bridge decks are gaining the attention of bridge owners because of their light self-weight, corrosion resistance, and ease of installation. Constructed Facilities Center at West Virginia University working with the Federal Highway Administration and West Virginia Department of Transportation has developed three different FRP decking systems and installed several FRP deck bridges in West Virginia. These FRP bridge decks are lighter in weight than comparable concrete systems and therefore their dynamic performance is equally as important as their static performance. In the current study dynamic tests were performed on three FRP deck bridges, namely, Katy Truss Bridge, Market Street Bridge, and Laurel Lick Bridge, in the state of West Virginia. The dynamic response parameters evaluated for the three bridges include dynamic load allowance (DLA) factors, natural frequencies, damping ratios, and deck accelerations caused by moving test trucks. It was found that the DLA factors for Katy Truss and Market Street bridges are within the AASHTO 1998 LRFD specifications, but the deck accelerations were found to be high for both these bridges. DLA factors for Laurel Lick bridge were found to be as high as 93% against the typical design value of 33%; however absolute deck stress induced by vehicle loads is less than 10% of the deck ultimate stress.  相似文献   

14.
Historically, truck weight regulations have maintained controls on axle and gross weights with legal load formulas based on limiting allowable stresses in certain types of bridges. These stress limitations do not usually lead to consistent or defensible reliability levels and also ignore the impact of the weight regulation on the existing highway bridge network. This paper is the second part of a two-paper series. The companion paper by the first writer illustrated how new truck weight regulations can be developed to provide an acceptable reliability level. The target reliability level was derived from bridge structures designed to satisfy AASHTO standard design specifications that showed safe and adequate performance levels under current truck loading conditions. In this part of the two-paper series, a deterministic load capacity evaluation as well as a reliability assessment are performed to review the consequences of adapting such regulations on the existing U.S. bridge network. A sensitivity analysis shows how changes in the safety criteria used to develop the truck weight regulations would affect the existing bridge network. Detailed load capacity evaluations and reliability analyses also are performed on a representative sample of bridges to provide specific examples of expected changes in rating and safety levels if the proposed truck weight regulation is to be adopted.  相似文献   

15.
16.
This paper presents a method for determining the dynamic impact factors for horizontally curved composite single- or multicell box girder bridges under AASHTO truck loading. The bridges are modeled as three-dimensional structures using commercially available software. The vehicle is idealized as a pair of concentrated forces, with no mass, traveling in two circumferential paths parallel to the curved centerline of bridges. An extensive parametric study is conducted, in which over 215 curved composite box girder bridge prototypes are analyzed. The key parameters considered in this study are: Number of cells, number of lanes, degree of curvature, arc span length, slope of the outer steel webs, number and area of bracing and top chord systems, and truck(s) speed and truck(s) positioning. Based on the data generated from the parametric study, expressions for dynamic impact factors for longitudinal moment, reaction, and deflection are proposed as function of the ratio of the arc span length to the radius of curvature. The results from this study would enable bridge engineers to design horizontally curved composite box girder bridges more reliably and economically. Furthermore, the results can be used to potentially increase the live-load capacity of existing bridges to prevent posting or closing of the bridge.  相似文献   

17.
Based on data collected by weigh-in-motion (WIM) measurements, truck traffic is synthesized by type and loading condition. Three-dimensional nonlinear models for the trucks with significant counts are developed from the measured data. Six simply supported multigirder steel bridges with spans ranging from 10.67 m (35 ft) to 42.67 m (140 ft) are analyzed using the proposed method. Road surface roughness is generated as transversely correlated random processes using the autoregressive and moving average model. The dynamic impact factor is taken as the average of 20 simulations of good road roughness. Live-load spectra are obtained by combining static responses with the calculated impact factors. A case study of the normal traffic from a specific site on the interstate highway I-75 is illustrated. Static loading of the heaviest in each truck type is compared with that of the American Association of State Highway and Transportation Officials standard design truck HS20-44. Several important trucks causing fatigue damage are found.  相似文献   

18.
The main objective of this research was to study the effects of different specified trucks on bridge rating with the load and resistance and factor rating (LRFR) procedure. Twelve specified trucks were selected for this study, which include one AASHTO design truck, three AASHTO legal trucks, and eight state legal trucks. These rating trucks were applied on 16 selected Tennessee Dept. of Transportation bridges to obtain the LRFR ratings. The selected bridges covered four commonly used bridge types, including prestressed I-beam bridges; prestressed box beam bridges; cast-in-place T-beam bridges; and steel I-beam bridges. The research results revealed that (1) LRFR AASHTO legal load ratings factors were enveloped by the LRFR HL-93 truck ratings factors, thereby confirming the validity of the LRFR tiered approach with regard to AASHTO legal loads; (2) the lighter state legal trucks were enveloped by the HL-93 loads, whereas the heavier state trucks with closer axle spacing typically resulted in load ratings that governed over the HL-93 loads; and (3) the bridges with both high average daily truck traffic and short spans were more likely to be governed by state legal load ratings instead of HL-93 load ratings.  相似文献   

19.
This paper presents a proposed rating model that incorporates the fatigue damaging effects of overloads. This is achieved by introducing a “fatigue index” in the rating equation. The index, which appears in the form of a correction factor in the rating equation, is intended as a means to reduce the rating value computed for a bridge in cases where the damage from overloads is expected to be significant. The use of this index by itself does not impose any upper limit on the total number of overloads that may annually be permitted on a bridge. However, because the use of the index will result in a lower rating value than those from current equations, it is expected that a certain number of overloads will ultimately be disallowed. This provides for a built-in mechanism that will eventually result in lower fatigue damage to highway bridges resulting from overloads. In developing the model, typical records of overloads were acquired and used in bridge structural analyses to determine the damaging effect of overloads. The study on five bridges showed that fatigue damage from overloads can use up about 3.5% of fatigue life over a 25-year period if the overload occurrences remain at the current level. The use of the proposed index is in line with this amount of fatigue damage. This percentage is rather low and may not, in fact, be critical for most bridges over a 25-year period. However for older bridges, this percentage of fatigue life consumption may become important. Many such bridges were designed for a lower gross truck weight than what is used today for bridge design. Some of these bridges are located along feeder ramps and must carry loads in excess of 356 kN (80 kip) in an overload situation. For this group of bridges, it may be important to consider imposing a limit on the amount of fatigue damage resulting from frequent overloads. However, additional studies on a larger pool of bridges will be needed to establish a baseline for a maximum percentage fatigue life that can be used for overload permits.  相似文献   

20.
All states in the United States issue special permits for nondivisible and∕or divisible truck overloads exceeding the weight limit of the highway jurisdiction. This causes stress levels higher than those induced by normal truck traffic. The rationality of such overstress levels has not been documented. This paper addresses several aspects of this issue. It presents (1) a method to develop live load models including overload trucks; (2) associated reliability models for assessing structural safety of highway bridges; and (3) proposed permit-load factors for overload checking in the load and resistance factor format. It shows that the proposed overload checking procedure leads to relatively uniform reliability of bridge structures. A sensitivity analysis is also presented here to assure that possible variations of the input data used to prescribe the proposed load factors will not adversely affect bridge safety. The proposed procedure is intended to be used by engineers responsible for checking overload permits. It may be included in evaluation specifications for highway bridges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号