首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Oxyfluoride glasses were developed with composition 60GeO 2 ·10AlF 3 ·25BaF 2 ·(1.95-x)GdF 3 · 3YbF 3 ·0.05TmF 3 ·xErF 3 (x=0.02,0.05,0.08,0.11,0.14,0.17)in mole percent.Intense blue(476 nm),green(524 and 546 nm)and red(658 nm)emissions which identified from the 1G 4 →3H 6 transition of Tm3+and the(2H 11/2 ,4S 3/2 )→4I 15/2 ,4F 9/2 →4I 15/2 transitions of Er3+,respectively,were simultaneously observed under 980 nm excitation at room temperature.The results show that multicolor luminescence including white l...  相似文献   

2.
Coal fly ashes WSRA and BQRA were ball milled for 5 h to produce their ultrafine coal fly ashes WSUA and BQUA, respectively. Batch kinetic, isotherm and pH effect on adsorption were studied to evaluate removal of Cr (VI) from aqueous solutions by ultrafine coal fly ashes comparing with raw coal fly ashes. The kinetics of adsorption indicates the process to be intraparticle diffusion controlled and follows the Lagergren first-order kinetics for all coal fly ashes. The first-order rate constants (k 1) of Cr (VI) adsorption onto WSRA, WSUA, BQRA and BQUA are 1.981, 1.497, 2.119 and 1.500 (×10−2) min−1, respectively. The adsorption capacities of WSUA and BQUA are much better than those of WSRA and BQRA. Equilibrium adsorption data of all coal fly ashes well satisfy the Langmuir isotherm. The adsorbed amounts of Cr (VI) onto WSUA and BQUA decrease from pH 2 to pH 6 and then increase up to pH 12.  相似文献   

3.
Functionalized graphene nano-platelets (FGN) were obtained via treating graphene nanoplatelets (GN) with HNO3, and served as adsorbent for the removal of Pb2+ from solutions. We investigated the FGN adsorption capacity for Pb2+ at different initial concentrations, varying pH, contact time and temperature. The characterization results of scanning electron microscopy (SEM), thermal analysis (TG/DTG), Fourier transform infrared spectroscopy (FT-IR) and Brunauer-Emmett-Teller (BET) method indicated that FGN layers were thin and possess large specific area with oxygen-containing functional groups grafted onto their surface. Meanwhile, the determined equilibrium adsorption capacity of FGN for Pb2+ was 57.765 mg/g and adsorption isotherms well confirmed to Langmuir isotherms models. The results reveals that the FGN has better effect of water treatment.  相似文献   

4.
Nanocrystalline Gd1.77Yb0.2Er0.03O3 samples were prepared by combustion and precipitation methods. Structures and upconversion luminescence properties of samples were studied. The results of XRD show that all samples are cubic structure, the average crystallite size could be calculated as 23 nm and 39 nm, respectively. The lattice constants were obtained. The FT-IR spectra were measured to investigate the vibrational feature of the samples. Upconversion luminescence spectra of samples under 980 nm laser excitation were investigated. The strong red emission of samples were observed, and attributed to 4F9/2→4I152 transitions of Er^3+ ions, the emission intensity for sample synthesized by precipitation method is stronger compared to that of combustion method. The possible upconversion luminescence mechanisms in nanocrystalline Gd1.77Yb0.2Er0.03O3 were discussed.  相似文献   

5.
Titania (TiO2) nanorod powder was prepared by nonhydrolytic sol-gel method using titanic chloride (TiCl4) as titanium source, methylene dichloride (CH2Cl2) as solvent, absolute ethyl alcohol (CH3CH2OH) as oxygen donor. The effects of Si4+ doping on the TiO2 nanocrystalline phase transformation temperature were systematically researched. The results showed that when the molar ratio of Ti4+ to Si4+ is 1 to1.3, TiO2 prepared by calcination at 1100 °C for 1 hour exhibits rod shape and has good photocatalytic activity. Doping of Si4+ makes glass phase core-shell structure forming on the surface of anatase crystal particles, which can inhibit crystal phase transformation and raise the transformation temperature, making TiO2 stable in anatase phase at 1200 °C.  相似文献   

6.
A composite material (Fe3O4/Coke) using coke supported Fe3O4 magnetic nanoparticles was successfully prepared via an in-situ chemical oxidation precipitation method and characterized by SEM, XRD, Raman, and FTIR. The results showed that the Fe3O4 nanoparticles existed steadily on the surface of coke, with better dispersing and smaller particle size. The catalytic ability of Fe3O4/Coke were investigatied by degrading p-nitrophenol (P-NP). The results showed that the apparent rate constant for the P-NP at 1.0 g·L?1 catalyst, 30 mmol·L?1 H2O2, pH=3.0, 30 °C and the best ratio of Coke/Fe3O4 0.6, was evaluated to be 0.027 min–1, the removal rate of CODCr was 75.47%, and the dissolubility of Fe was 2.42 mg·L–1. Compared with pure Fe3O4, the catalytic ability of Fe3O4/Coke in the presence of H2O2 was greatly enhanced. And Fe3O4/Coke was a green and environmental catalyst with high catalytic activity, showing a good chemical stability and reusability.  相似文献   

7.
Nano-spherical Co2+-doped FeS2 was synthesized through a simple solvothermal method. The products were investigated using XRD, FE-SEM, BET, ICP, EDS, TEM, HRTEM, XPS, and UV-vis spectroscopy. The results indicated that Co2+ ion could change the particle nucleation process and inhibited the particle growth of FeS2. In addition, when the content of doped Co2+ was 15%, the degradation efficiency of methylene blue (MB) achieved 60.72% after 210 min irradiation, which increased by 52.01% than that of the undoped FeS2. Moreover, comparison experiments also demonstrated that the M (M=Co2+, Co2+/Ni2+)-doped FeS2 photocatalytic activity efficiency sequence was Co2+ > Ni2+>Co2+/Ni2+. This is ascribed to the fact that the Co2+ doping could induce the absorption edge shifting into the visible-light region and increased the surface area of the samples. The effect mechanisms of M-doping on the band gap and the photocatalytic activity of FeS2 were also discussed.  相似文献   

8.
The synthesis of Nd3+, Y3+:CaF2 nanopowder was conducted by azeotropic distillation method, which effectively dehydrated hydrous CaF2 and prevented forming hard agglomerates. X-ray diffraction (XRD), scanning electron microscopy (SEM), scanning calorimetries-thermalgravimetry (DSC-TG), Fourier transform infrared spectroscopy (FT-IR) and absorption spectroscopy were performed to characterize the powder properties. The experimental results showed that products obtained by azeotropic distillation were single phased, rather monodispersed, successfully prevented the hard agglomerate formation and effectively removed the residual water inside the as-prepared precipitate than that of the direct drying. The absorption spectra showed a wider and stronger absorption bands around 792 nm, which should be profitable for LD pumping.  相似文献   

9.
CoFe2O4 nanoparticles (NPs) were synthesized by coprecipitation method using FeCl3·6H2O and CoCl2·6H2O as precursors.The synthesized conditions were optimized,such as added means of precipitator,quantity of precipitator,the mol ratio of Fe 3+ to Co2+,reaction temperature and pH value.The synthesized material was characterized by XRD,TEM,FTIR,EDS,Raman and its magnetic properties were studied by VSM.The experimental results confirm that the sample is cubic spinel structure CoFe2O4 with a narrow size distribution and a good dispersion feature.CoFe2O4 NPs with well-controlled shape and size was obtained at 70℃.The magnetic properties indicate superparamagnetic behavior and good saturated magnetization.  相似文献   

10.
The Sm3+-doped SrO-Al2O3-SiO2 (SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated by DTA, XRD, SEM and luminescence spectroscopy. The results indicate that the crystal phase precipitated in this system is monocelsian (SrAl2Si2O8) and with the increase of nucleation/crystallization temperature, the crystallite increases from 66 % to 79 %. The Sm3+-doped SAS glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm under the excitation of 475 nm blue light which can be assigned to the 4G5/26 H j/2 (j=5, 7, 9, 11) transitions of Sm3+, respectively. Besides, by increasing the crystallization temperature or the concentration of Sm3+, the emission lights of the samples located at 565, 605 and 650 nm are intensified significantly. The present results demonstrate that the Sm3+-doped SAS glass-ceramics are promising luminescence materials for white LED devices by fine controlling and combining of these three green, orange and red lights in appropriate proportion.  相似文献   

11.
The polycrystalline Eu^2+ and Dy ^3+ co-doped strontium aluminates SrAl2O4: Eu^2+, Dy^3+ with different compositions were prepared by solid state reactions. The UV-excited photoluminescence, persistent luminescence and thermo-luminescence were studied and compared. Results show that the doped Eu^2+ ion in SrAl2O4: Eu^2+, Dy^3+ phosphors works as not only the UV-excited luminescent center but also the persistent luminescent center. The doped Dy^3+ ion can hardly yield any luminescence under UV-excitation, but effectively enhance the persistent luminescence and thermo-luminescence of SrAl2O4: Eu^2+. Dy^3+ co-doping can help form electron traps with appropriate depth due to its suitable electro-negativity, and increase the density and depth of electron traps. Based on above observations, a persistent luminescence mechanism, electron transfer model, is proposed and illustrated.  相似文献   

12.
To discuss the function of Eu and Dy and their interaction in Sr2MgSi2O7: Eu2+, Dy3+ long afterglow material, the Eu and Dy single doped and their co-doped Sr2MgSi2O7: Eu2+, Dy3+ were prepared. The samples were characterized by X-ray diffraction (XRD), decay curves, photoluminescence (PL), and thermoluminescence (TL). The results indicate that Sr2MgSi2O7: Eu has afterglow properties, and the doping of Eu ion in Sr2MgSi2O7: Eu2+, Dy3+ can lower the depth of traps. Eu ion can not only serve as luminescence center, but also produce traps in the matrix, meanwhile, it also exerts certain influences on the traps produced by Dy in Sr2MgSi2O7: Eu2+, Dy3+. The Dy ion can not act as luminescence center but relates to the change of the traps in the Sr2MgSi2O7 matrix.  相似文献   

13.
In this study,low-rank coal-water slurry(LCWS) was prepared using polyoxyethylene dodecylphenol ether(PDPE) and polyoxyethylene lauryl ether(PLE),respectively.A combination of experiments and simulations was used to investigate the pulping properties and microscopic mechanism of the LCWS samples prepared using the two agents,so as to explore the influence of benzene ring on the performance of dispersant.The results of the LCWS preparation experiments revealed that the pulp-forming performance of PDPE exceeded that of PLE.When LCWS concentration is 62%,64%,and 66%,the apparent viscosity corresponding to PDPE is 247.80,504.17,and 653.10 mPa·s,and the apparent viscosity corresponding to PLE is 548.10,1470.61,and 1549.98 mPa·s,respectively.The C_(1000)(When the apparent viscosity is 1000 mPa·s,the corresponding concentration of LCWS is defined as C_(1000)) values of PDPE and PLE are 67.60% and 62.95%,respectively.In addition to the van der Waals forces and hydrogen bonds between the PDPE and/or PLE molecules and coal,the benzene rings of PDPE present π-π stacking effect with the aromatic rings of coal.That could facilitate and strengthen the adsorption of PDPE on coal,which would be conducive to further improving the dispersion of coal particles.The two dispersants have no significant difference in effect on the pyrolysis of LCWS.The simulation results indicated that the times for PDPE and PLE molecules to reach flat adsorption state on coal are approximately 290 and 565 ps,respectively.The self-diffusion coefficient(D) of the PDPE and PLE on coal is 3.16 x 10~(-6) and6.57×10~(-6) m~2/s,respectively,and their interaction energies with coal are 785.71 and 648.60 kcal/mol,respectively.The results of the simulation calculations demonstrated that PDPE adsorbed on coal easier than PLE,and its binding is more stable than that of PLE owing to the π-π stacking effect,which is conducive to uniform dispersion of coal in solution.The simulation results confirmed the experimental results.  相似文献   

14.
A series of Eu0.5Tb0.5(TTA)3Phen/PMMA (TTA=thenoyltrifluoroacetone,Phen=phenanthroline) and Eu0.5Tb0.5(TTA)3Dipy/PMMA (Dipy=2,2’-dipyridyl) were prepared by in-situ polymerization.The structures of the composites were characterized by IR spectra and electron spectrum.Photoluminescence properties were investigated by UV-Vis spectra and fluorescence spectra.Meanwhile,the energy transfer models were set up.The results indicated that polymer parts were attached with the rare-earth molecular parts in the composi...  相似文献   

15.
A series of nanometer TiO2 photocatalysts co-doped respectively with rare earth Er3+-Ce3+ and La3+-Fe3+ were prepared by sol-gel method,and the photocatalytic activity under ultra-violet light was evaluated by photocatalytic degradation of methyl blue.The crystallographic forms,particles size,and morphology were characterized by XRD and TEM.The results showed that the optimum heat temperature of co-doped TiO2 was 550 ℃,and the co-doped TiO2 kept anatase.The anatase crystal had the average size of 20 nm.The ...  相似文献   

16.
为进一步去除煤化工废水生化出水中残留的有机污染物,采用以剩余污泥和铁泥为原材料制备的SAC-Fe作为催化粒子电极构建三维电Fenton体系深度处理煤化工废水,对过程参数进行优化,并探讨催化反应机理.结果表明:制备的SAC-Fe对煤化工废水生化出水中的污染物具有较高吸附性能,单位COD吸附容量为101.1 mg/g;采用RSM优化的三维电Fenton过程参数为电流密度16.78 m A/cm2、Fe浓度14.75 mmol/L、p H 3.92,此时TOC去除率为67.12%;通过体系内H2O2和·OH生成量分析,结合吸附作用探讨三维电Fenton深度处理煤化工废水的催化反应机理,SAC-Fe表现出较高的(电)催化活性,显著提升三维电Fenton体系内H2O2和·OH的生成量和生成速率,吸附作用提高·OH利用率和污染物降解率,进而提升三维电Fenton深度处理煤化工废水的效能.  相似文献   

17.
With the rapid development of computer networks and other data-transmitting ser-vices, the demand for the increase of transmission capacity of the long distance trans-mission system is urgent. However, the conventional SiO2-based EDFA is limited for its small bandwidth. The Er3+-doped tellurite glass exhibits a larger stimulated-emission cross section and a broader emission bandwidth at the third communication window (1.55 μm) than that of silicate, phosphate, and germanate glasses, which c…  相似文献   

18.
Eu3+-doped ZnMoO4 with different doping concentrations were synthesized by a hydrothermal method. The effects of Eu3+ doping on the phase structure and photoluminescence (PL) properties of ZnMoO4 were investigated. The result showed that the introduction of Eu3+ could lead to phase transition of ZnMoO4. With the increase of Eu3+ doping amount, β-ZnMoO4 was transformed to α phase gradually, which led to different photoluminescence performances. The optimized doping concentration of Eu3+ was 6 mol% for the highest emission intensity at 615 nm. Its CIE chromaticity coordinates were (0.667, 0.331), which were very close to the values of standard chromaticity (0.67, 0.33) for National Television Standards Committee (NTSC) system. Therefore, Eu3+-doped ZnMoO4 is considered to be a promising red-emitting phosphor for white LED applications.  相似文献   

19.
The nanowires-reticulated calcium silicate with a specific surface area more than 100 m2/g was prepared by a hydrothermal process using hydrated lime (Ca(OH)2, HL) and silica containing soluble fluoride, which was a by-product of fluorine industry, and the soluble fluoride in raw silica was fixed as CaSiF6 at the same time. The kinetic characteristics and mechanism of adsorbing phosphate by fluorine-containing calcium silicate were investigated in the experiments of phosphorus (P) removal from aqueous solution. The results show that the prepared fluorine-containing calcium silicate has excellent performance for adsorbing phosphate, the adsorption process appears to follow pseudo-second-order reaction kinetics and the process is mainly controlled by chemisorption. The product resulted from P adsorption is mainly composed of hydroxyapatite (HAP) and fluorapatite (FAP), which are further used as adsorbents of heavy metal ion Cd2+ in aqueous solution and display excellent performance.  相似文献   

20.
A montmorillonite inorgano-intercalation compound(MIIC) was synthesized by using a purified Na-exchanged bentonite (PNaB) as a matrix and Al-pillaring ion as an intercalating reagent under microwave irradiation. The synthesized products were characterized by X-ray diffraction (XRD), 27Al magic angle sample-spinning nuclear magnetic resonance (27Al MAS NMR), specific surface area (BET) measurement, and adsorption density determination. The results show that, at 5% solid (PNaB) concentration and 7 minutes irradiation in a 130 W microwave oven, the basal spacing d (001) of the synthesized MIIC increases to 1.740 nm from the original 1.218 nm of PNaB. The MIIC has much higher adsorptive densities to F and Cr6+ from aqueous solution than the PNaB. The adsorption isotherm of F on the MIIC follows the Freundlich equation, and the increased adsorption is mainly due to the porous structure of the MIIC which created larger adsorption surfaces. The adsorption isotherm of Cr6+ on MIIC follows the Langmuir equation and the adsorption is mainly monolayer as a result of chemisorptions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号