首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transparent conductive aluminum doped zinc oxide(ZnO:Al,AZO) films were prepared on glass substrates by rf(radio frequency) magnetron sputtering from ZnO: 3wt% Al_2O_3 ceramic target. The effect of argon gas pressure(PAr) was investigated with small variations to understand the influence on the electrical, optical and structural properties of the films. Structural examinations using X-ray diffraction(XRD) and scanning electron microscopy(SEM) showed that the ZnO:Al thin films were(002) oriented. The resistivity values were measured by four-point probe with the lowest resistivity of 5.76×10~(-4) Ω?cm(sheet resistance=9.6 Ω/sq. for a thickness=600 nm) obtained at the PAr of 0.3 Pa. The transmittance was achieved from ultravioletvisible(UV-VIS) spectrophotometer, 84% higher than that in the visible region for all AZO thin films. The properties of deposited thin films showed a significant dependence on the PAr.  相似文献   

2.
Polycrystalline Bi4Ti3O12 thin films with various fractions of a-axis, c-axis and random orientations have been grown on Pt(111)/Ti/SiO2/Si substrates by laser-ablation under different kinetic growth conditions. The relationship between the structure and ferroelectric property of the films was investigated, so as to explore the possibility of enhancing ferroelectric polarization by controlling the preferred orientation. The structural characterization indicated that the large growth rate and high oxygen background pressure were both favorable for the growth of non-c-axis oriented grains in the Bi4Ti3O12 thin films. The films with high fractions of a-axis and random orientations, i e, f (a-sxis) = 28.3% and f (random) = 69.6%, could be obtained at the deposition temperature of 973 K, oxygen partial pressure of 15 Pa and laser fluence of 4.6 J/cm2, respectively. It was also noted that the variation of ferroelectric polarization was in accordance with the evolution non-c-axis orientation. A large value of remanent polarization (2Pr = 35.5 μC/cm2) was obtained for the Bi4Ti3O12 thin films with significant non-c-axis orientation, even higher than that of rare-earth-doped Bi4Ti3O12 films.  相似文献   

3.
Sapphire, belonging to hexagonal crystal system, is typically anisotropic which makes it direction-sensitive. To research the effects of growth directions on properties of sapphire, c-[0001] seed(c-sapphire) and a-[11-20] seed(a-sapphire) were used to prepare sapphire by edge-defined film-fed growth(EFG) method. The samples were analyzed through lattice integrity, dislocation and corrosion performance by double-crystal XRD, OM, AFM, SEM and EDX. It was shown that the lattice integrities of two growth-direction crystals were both well due to the small FWHM values. While the average densities of dislocation in c-sapphire and a-sapphire were 9.2×103 and 3.9×103 cm-2 respectively, the energy of dislocation in c-sapphire was lower than that in a-sapphire. During Strong Phosphoric Acid(SPA) etching, the surface of c-sapphire basically kept smooth but in a-sapphire there were many point-like corrosion pits where aluminum and oxygen atoms lost by 2:1. Our work means that it will be promising for growing c-[0001] seed sapphire by EFG if aided by parameter optimization.  相似文献   

4.
c-axis-oriented SmBa_2Cu_3O_7(SmBCO) films have been deposited on(100)- LaA1O_3(LAO)substrate by metal organic chemical vapor deposition(MOCVD) technique.The effects of deposition temperature(T_(dep)) and total pressure(P_(tot)) on the orientation and microstructure of SmBCO films were investigated.The orientation of SmBCO films transformed from α-axis to c-axis with increasing of T_(dep) from 900 to 1 100℃.At T_(dep)=1 050℃,SmBCO films had c-axis orientation and tetragon surface.At P_(tot)~(dep)=400-800 Pa and T_(dep)=1 050 ℃,totally c-axis-oriented SmBCO films were obtained.The R_(dep) of SmBCO films increased firstly and then decreased with increasing P_(tot).The surface of SmBCO films exhibited tetragon morphology at 1 050 ℃ and400 Pa.Maximum thickness of SmBCO film deposited was 1.2μm at P_(tot)= 600 Pa,and the corresponding R_(dep)was 7.2 μm·h~(-1).  相似文献   

5.
Indium doped Zn O films were grown on quartz glass substrates by radio frequency magnetron sputtering from powder targets. Indium content in the targets varied from 1at% to 9at%. In doping on the structure, optical and electrical properties of Zn O thin films were studied. X-ray diffraction shows that all the films are hexagonal wurtzite with c-axis perpendicular to the substrates. There is a positive strain in the films and it increases with indium content. All the films show a high transmittance of 86% in the visible light region. Undoped Zn O thin film exhibits a high transmittance in the near infrared region. The transmittance of indium doped Zn O thin films decreases sharply in the near infrared region, and a cut-off wavelength can be found. The lowest resistivity of 4.3×10~(-4) Ω·cm and the highest carrier concentration of 1.86×10~(21) cm~(-3) can be obtained from Zn O thin films with an indium content of 5at% in the target.  相似文献   

6.
The Cu x Si1-x thin films have been grown by pulsed laser deposition (PLD) with in situ annealing on Si (001) and Si (111), respectively. The transformation of phase was detected by X-ray diffraction (XRD). The results showed that the as-deposited films were composed of Cu on both Si (001) and Si (111). The annealed thin films consisted of Cu + η”-Cu3Si on Si (001) while Cu + η’-Cu3Si on Si (111), respectively, at annealed temperature (T a) = 300-600 °C. With the further increasing of T a, at T a= 700 °C, there was only one main phase, η”-Cu3Si on Si (001) while η’-Cu3Si on Si (111), respectively. The annealed thin films transformed from continuous dense structure to scattered-grain morphology with increasing T a detected by field emission scanning electron microscope (FESEM). It was also showed that the grain size would enlarge with increasing annealing time (t a).  相似文献   

7.
The yttrium iron garnet(YIG) thin films prepared by the sol-gel method and rapid thermal annealing(RTA) process for integrated inductor are investigated. The X-ray diffraction(XRD) results indicate that the YIG film annealed above 650 ℃ is poly-crystalline with single-phase garnet structure. Moreover, it can be found that the initial permeability μi, saturation magnetization M_S and coercivity H_c of these YIG films increase with increasing RTA temperature. Low temperature annealing after crystallization can further improve the magnetic properties of YIG film. Thereby, a planar integrated inductor in the presence of Si substrate/SiO_2 layer/Y_(2.8)Bi_(0.2)Fe_5O_(12) thin film/Cu spiral coil structure is fabricated successfully by the standard IC processes. Due to the magnetic enhancement originated from YIG film, the inductance L and quality factor Q of the inductor with YIG film are improved in a certain frequency range.  相似文献   

8.
ZnMn2O4 films for resistance random access memory (RRAM) were fabricated with different device structures by magnetron sputtering. The effects of electrode on I-V characteristics, resistance switching behavior, endurance and retention characteristics of ZnMn2O4 films were investigated. The ZnMn2O4 films, using p-Si and Pt as bottom electrode, exhibit bipolar resistive switching (BRS) behavior dominated by the space-charge-limited conduction (SCLC) mechanism in the high resistance state (HRS) and the filament conduction mechanism in the low resistance state (LRS), but the ZnMn2O4 films using n-Si as bottom electrodes exhibit both bipolar and unipolar resistive switching behaviors controlled by the Poole-Frenkel (P-F) conduction mechanism in both HRS and LRS. Ag/ZnMn2O4/p-Si device possesses the best endurance and retention characteristics, in which the number of stable repetition switching cycle is over 1000 and the retention time is longer than 106 seconds. However, the highest R HRS/R LRS ratio of 104 and the lowest V ON and V OFF of 3.0 V have been observed in Ag/ZnMn2O4/Pt device. Though the Ag/ZnMn2O4/n-Si device also possesses the highest R HRS/R LRS ratio of 104, but the highest values of V ON,V OFF, R HRS and R LRS, as well as the poor endurance and retention characteristics.  相似文献   

9.
Composition tables play a significant role in qualitative spatial reasoning (QSR). At present, a couple of composition tables focusing on various spatial relations have been developed in a qualitative approach. However, the spatial reasoning processes are usually not purely qualitative in everyday life, where probability is one important issue that should be considered. In this paper, the probabilistic compositions of cone-based cardinal direction relations (CDR) are discussed and estimated by making some assumptions. Consequently, the form of composition result turns to be {(R 1,P 1), (R 2,P 2), ..., (R n ,P n )}, where P i is the probability associated with relation R i . Employing the area integral method, the probabilities in each composition case can be computed with the assumption that the target object is uniformly distributed in the corresponding cone regions.  相似文献   

10.
Ferroelectric and leakage properties are important for ferroelectric applications. Pure and Nd-doped (x=0.05-0.20) BiFeO3 thin films were fabricated by sol-gel method on FTO substrates. The phase structure, surface morphology, leakage current, ferroelectric properties, and optical properties of BiFeO3- based thin films were investigated. The substitution of Nd3+ ions for the Bi3+ site converts the structure from rhombohedral to coexisting tetragonal and orthorhombic. Nd doping improves the crystallinity of BiFeO3 thin films. The leakage current of Nd-doped BiFeO3 decreases by two to three orders of magnitude compared with that of pure BiFeO3. Among the samples, 15% Nd-doped BiFeO3 exhibits the strongest ferroelectric polarization of 17.96 μC/cm2. Furthermore, the absorption edges of Bi1-xNd x FeO3 thin films show a slight red-shift after Nd doping.  相似文献   

11.
Epitaxial (0001)-oriented Zn1?x Co x O ( x = 0.01, 0.05 and 0.1) thin films were grown on c-sapphire substrates by pulsed laser deposition. The XRD analysis, optical transmittance and XPS measurements revealed that the Co2+ substituted Zn2+ ions were incorporated into the lattice of ZnO in Zn1?x Co x O thin films. The electrical properties measurements revealed that the Co concentration had a nonmonotonic influence on the electrical properties of the Zn1?x Co x O thin films due to the defects resulted from imperfections induced by Co substitution. The resistivity remarkably increased and the carrier concentration remarkably decreased in Zn1?x Co x O thin films after oxygen annealing at 600 ° under 15 Pa O2 pressure for 60 mins. Room-temperature ferromagnetic was observed and the ferromagnetic Co amount was smaller than the nominal Co concentration for Zn1?x Co x O samples before oxygen annealing. After oxygen annealing, the Zn1?x Co x O thin films exhibited paramagnetic behavior. It is suggested that the room-temperature ferromagnetic of Zn1?x Co x O thin films may attribute to defects or carriers induced mechanism.  相似文献   

12.
Structural, anisotropic, and thermodynamic properties of Imm2-BCN were studied based on density function theory with the ultrasoft psedopotential scheme in the frame of the generalized gradient approximation(GGA). The elastic constants were confirmed that the predicted Imm2-BCN is mechanically stable. The anisotropy of elastic properties were also studied systematically. The anisotropy studies of Young's modulus, shear modulus, linear compressibility, and Poisson's ratio show that the Imm2-BCN exhibits a large anisotropy. Through the quasi-harmonic Debye model, the relations between the equilibrium volume V, thermal expansion α, the heat capacity C_V and CP, the Grüneisen parameter γ, and the Debye temperature Θ_D with pressure P and temperature T were also studied systematically.  相似文献   

13.
The spontaneous magnetic transitions and corresponding magnetoelastic properties of intermetallic compounds RMn2Ge2 (R=Gd, Tb and Dy) were investigated by using the X-ray diffraction method and magnetic measurement. The results showed that the compounds experience two magnetic transitions, namely the second-order paramagnetic to antiferromagnetic transition at temperature TN (TN=368, 423 and 443 K for GdMn2Ge2, TbMn2Ge2 and DyMn2Ge2, respectively) and the first-order antiferromagnetic - ferrimagnetic transition at temperature Tt (Tt=96, 80 and 40 K for GdMn2Ge2, TbMn2Ge2 and DyMn2Ge2, respectively) as the temperature decreases. The temperature dependence of the lattice constant a(T) displays a negative magnetoelastic anomaly at the second-order transition point TN and, at the first-order transition Tt, a increases abruptly for GdMn2Ge2 and TbMn2Ge2, Δa/a about 10-3. Nevertheless, the lattice constant c almost does not change at these transition points indicating that such magnetoelastic anomalies are mainly contributed by the Mn-sublattice. The transitions of the magnetoelastic properties are also evidenced on the temperature dependence of magnetic susceptibility χ. The first-order transition behavior at Tt is explained by the Kittel mode of exchange inversion.  相似文献   

14.
Void-free β-SiC films were deposited on Si(001) substrates by laser chemical vapor deposition using hexamethyldisilane (HMDS) as the precursor. The effect of the time of introducing HMDS, i e, the substrate temperature when HMDS introduced (Tin), on the preferred orientation, surface microstructure and void was investigated. The orientation of the deposited SiC films changed from <001> to random to <111> with increasing Tin. The surface showed a layer-by-layer microstructure with voids above Tin ? 773 K, and then transformed into mosaic structure without voids at Tin= 298 K. The mechanism of the elimination of voids was discussed. At Tin =298 K, Si surface can be covered by an ultrathin SiC film, which inhibits the out-diffusion of Si atoms from substrate and prohibites the formation of the voids.  相似文献   

15.
Plasma-enhanced CVD(PECVD) epitaxy at 200℃ was used to deposit heavy doped n-type silicon films. Post-annealing by rapid thermal processing was applied to improve the properties of the epitaxial layer. By analyzing the Raman spectra and the imaginary part of the dielectric constant spectra of the samples, it was found that high-quality heavy-doped epitaxial n-type silicon layer can be obtained by optimizing the parameters of the PECVD depositing process. Reducing the electrodes distance of the PECVD had a great effect on the crystallzation of the epitaxialed n-type silicon films. Sillicon films with high-crystallization were obtained with the electrodes distance of 18 mm. Post-annealing process can improve the crystallization and reduce the resistance of the epitaxial films. In our research, it was found that the sheet resistance(R_□) of the post-annealed films with thickness of about 50 nm has a simple relationship with RPH3/SiH_4(ratio of the flow rate of PH_3 and SiH_4) of the PECVD processing: R_□=-184-125 lg(R_(PH3/SiH4)). In the end, high-quality epitaxial n-type silicon film was obtained with R_□ of 15 Ω/□ and thickness of ~50 nm.  相似文献   

16.
We put forward a first-principles density-functional theory about the impact of pressure on the structural and elastic properties of bulk CaN2, SrN2 and BaN2. The ground state properties of three alkaline earth diazenides were obtained, and these were in good agreement with previous experimental and theoretical data. By using the quasi-harmonic Debye model, the thermodynamic properties including the debye temperature Θ D, thermal expansion coefficient α, and grüneisen parameter γ are successfully obtained in the temperature range from 0 to 100 K and pressure range from 0 to 100 GPa, respectively. The optical properties including dielectric function ε(?), absorption coefficient α(?), reflectivity coefficient R(?), and refractive index n(?) are also calculated and analyzed.  相似文献   

17.
The regression formula between3He/4He ratio of underground fluids and terrestrial heat flow in continental areas is tested by data sets from the former Soviet Union and the mainland of China. The results show that there is no close relation between the two values. The heat-He relation might estimate the regional heat flow value with ±25% accuracy at best. We propose that the ratio of crust/mantle component of continental heat flow (q c/q m) be inversely related to the3He/4He ratio of underground fluids. Based on data sets of3He/4He ratio andq c/q m in the Eurasia and Canadian Shield, we obtain the regression relation betweenq c/q m and3He/4He:q c/q m=0.815?0.300*loge (3He/4He), in which the unit of3He/4He is Ra (atmospheric3He/4He ratio). The crust and mantle heat flow components can be taken from surface heat flow andq c/q m ratio. Based on this formula and heat flow data in major basins of China, the crustal, mantle heat flow values and the average crustal heat production rates were estimated. The estimated crustal chemical composition of China is in agreement with the result inferred by deep seismic sounding survey. Helium isotope ratio (3He/4He) of underground fluids may be a useful parameter for separating crust and mantle components of continental heat flow.  相似文献   

18.
BiB3O6 (BIBO) single crystals with size of 46×23×10 mm3 and weight of 26.0 g have been successfully grown by top-seeded method. Problems encountered in the growth process of this crystal have been discussed in detail, and the methods of growing high-quality large crystals have been put forward. The relationship between their structure and properties is studied. The space group of monoclinic BiB3O6 is C2 and the cell parameters are a=7.1203(7) Å, b=4.9948(7) Å, c=6.5077(7) Å, β=105.586(8)″, and V=222.93(5) Å3. The density of BIBO is 4.8965 g/cm3. The Mohs’s scale of hardness is 5.5–6. There is no cleavage face in the crystal. The transmittance of BIBO is about 80 percent in the range from visible coherent light to near-infrared light. The ultraviolet cutoff wavelength is at 276 nm. BiB3O6 is a biaxial crystal and has two sets of axes, and the relative orientation of (X, Y, Z) with regard to (a, b, c) is: X//b, (Y, c)=47.2°, (Z, a)=31.6°, determined by X-ray analysis combined with polarized microscopy. Second-harmonic-generation (SHG) experiments were carried out for the first time. In type I phase-matching (PM) directions (11.1°, 90°) and (168.9°, 90°), SHG conversion efficiencies of two directions for 1.064 μm light are up to 67.7% and 58%, respectively. We have also obtained the third-harmonic-generation (THG) of 1.064 μm. The comparative experiments between BIBO and KTP were carried out on conversion efficiency, transmittance and hardness. All the above results indicate that BiB3O6 is a kind of excellent nonlinear optical (NLO) crystal.  相似文献   

19.
Nanocomposite cation exchange membranes(CEMs) were prepared by adding various loadings of functionalized silica nanoparticles to the sulfonated polyethersulfone(s PES) polymeric matrix. The silica nanoparticles were functionalized by mercaptopropyl(F_1, IEC=0), propylsulfonic acid(F_2, IEC= 2.71), and sulfonic acid(F_3, IEC=2.84). The properties of prepared membranes were investigated by varying the loadings of functionalized silica nanoparticles. Applying functionalized nanoparticles provides additional ion exchange groups and enhances water contents as well as conductivities and permselectivities of the membranes. The maximum IEC of 1.9 meq.g~(-1) was obtained for the membrane having 3 wt% F_3 nanoparticles and the maximum conductivity of 0.237 S·cm~(-1) was achieved for the membrane having 2 wt% F_3 nanoparticles, which were 19.6% and 64% higher than the corresponding values for s PES membrane, respectively. The excellent properties of the nanocomposite cation-exchange membranes make them appropriate candidates for electrodialysis and desalination processes.  相似文献   

20.
Nanocrystalline zirconia (ZrO2) was synthesized using a microwave-hydrothermal process. The effect of pH on the crystallization of the ZrO2 powders was investigated. The phase and microstructure of ZrO2 powders were examined using X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). Results show that pure m-ZrO2 can be obtained at low pH (pH<2). Pure t-ZrO2 is formed at pH = 7 and 14. The size of the ZrO2 crystals is in the range of 8-26 nm and decreases with increasing pH. The formation of m-ZrO2 results from the precipitation of ZrO2 from solution. The t-ZrO2 is formed through the in-situ structural rearrangement of amorphous Zr(OH) x O y . The stabilization of t-ZrO2 is attributed to the small crystal size and the adsorption of hydroxy ions on the surfaces of the crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号