首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of Mo on the morphology, crystal structure and hydrogen sorption properties of Mg/C composites prepared by reactive milling was studied. Transmission electron microscopic(TEM) observation shows that Mg/C composites prepared with the addition of Mo are of nanoscale with particle size about 20-120 nm after 3 h of milling under 1 MPaH_2. MgH_2 of tetrahedral crystal structure predominates in the materials with the geometric shape of oblique hexagonal prism. From X-ray diffraction(XRD) and hydrogen content studies, Mo and crystallitic carbon have a synergistic effect on promoting the hydrogenation rate in the reactive milling process. From differential scanning calorimetric(DSC) studies, the dehydrogenation peak temperature of the Mg/C materials with Mo is lowered to 299-340 ℃.  相似文献   

2.
Based on experimental results that VH0.81/MgH2 interface was found during the process of mechanically milling MgH2+5at.%V nanocomposite, H atoms diffusion and adsorption properties of MgH2-V systems have been investigated by using a first-principles plane-wave pseudopotential method based on the density functional theory. The results are as follows. When VH/MgH2 interface is formed due to V alloying MgH2 phase, the vacancy formed by H atoms near VH phase region is more stable than that without V alloying, while vacancy near MgH2 phase region is less stable than that without V alloying. During the process of H atoms diffusion after V alloying, the max migration barrier energy of H atoms in MgH2-V systems is reduced compared with that of MgH2 phase, which means that H atoms diffuse easily. When H diffuses into VH from MgH2 across VH/MgH2 interface, among three substitutions such as the replacement of H for V vacancy, or interstitial site or V atoms, the replacement of H for V vacancy has the strongest diffusion ability, next interstitial site, and finally V atoms site. As far as H adsorbed on different surfaces of VH phase is concerned, physical adsorption is carried out more easily than chemical adsorption, and the behavior of H atoms adsorbed on the surface near VH phase region can be found more easily than that near MgH2 phase region. Supported by the Ministry of Science and Technology of China (Grant No. 2006CB605104) and the National Natural Science Foundation of China (Grant No. 50771044)  相似文献   

3.
Based on experimental results in which VH0.81/MgH2 interface was found during the process of mechanically milling MgH2+5at%V nanocomposite, a VH/MgH2 interface is designed and constituted in this work. A first-principles plane-wave pseudopotential method based on Density Functional Theory (DFT) has been used to investigate the vanadium alloying effects on the dehydrogenating properties of magnesium hydride, i.e., MgH2. A low absolute value of the negative heat of formation of VH/MgH2 interface compared with that of MgH2 indicates that vanadium hydrides befit to improve the dehydrogenating properties of MgH2. Based on the analysis of the density of states (DOS) and the total valence electron density distribution of MgH2 before and after V alloying, it was found that the improvement of the dehydrogenating properties of MgH2 caused by V alloying originates from the increasing of the valence electrons at Fermi level (E F) and the decreasing of the HOMO-LUMO gap (ΔE H-L) after V alloying. The catalysis effect of V on dehydrogenating kinetics of MgH2 may attribute to a stronger bonding between V and H atoms than that between Mg and H atoms, which leads to nucleation of the α-Mg at the VH/MgH2 interface in the MgH2-V systems easier than that in pure MgH2 phase.  相似文献   

4.
La0.8Sr0.2MnO3 samples with rhombohedral, orthohombic and monoclinic structures were prepared by solid state reaction, sol-gel and co-precipitation methods, respectively. Lattice parameters, grain size, morphology, infrared absorption and emissivity of samples were investigated. The results indicated that the average crystallite size calculated from XRD result and particle size of orthohombic sample were smaller than those of the other two samples, and honeycomb shape grains were observed in orthohombic sample. Due to lower crystal symmetry, Mn-O stretching vibration peaks of the three samples shifted to higher infrared wavenumber. According to the theory of wave optics and Kirchhoff law, bigger rhombohedral sample showed higher emissivity than monoclinic one. However, due to the honeycomb structure of orthohombic sample, repeated reflection and scattering led to the increase of absorption, and orthohombic sample exhibited the highest emissivity.  相似文献   

5.
The effect of grain size of CaCO3 and SiO2 on the formation of C3S under various conditions, such as rapid heating rate(800 ℃/min), normal heating rate(30 ℃/min) and in the presence or absence of ZnO, was studied. The results show that the decomposition temperature of CaCO3, the temperature of appearance of liquid phase and the f-CaO content descend when the grain size of CaCO3 and SiO2 becomes smaller, which attributes to the reactive activity enhancement of powders due to the decrease of the particle size. When the grain size of CaCO3 and SiO2 is below 1 μm, the rate of the formation of C3S is greatly raised. A rapid sintering rate and the presence of ZnO have an important effect on the formation of C3S and can lower the temperature of the formation of C3S by about 50 ℃.  相似文献   

6.
The dielectric ceramics with a main crystal phase of MGTiO3 and additional crystal phase of CaTiO3 were prepared by the conventional electronic ceramics technology .the strucures of MgTiO3 are ilmenitetype,and belong to hexagonal syngony.the ratio of MgTiO3 to Ca TiO3 doping on the dielectric properties of MGTiO3-CaTiO3(MCT)ceranics were inrestigated.the addition of B2O3 decreases the sintering temperatnre and results in rapid desification without obrious negative effect on the Q values of the system(Q=1/tan ).B2O3 exists as liquid phase in the sintering process,promoting the reactions as a singering agent.  相似文献   

7.
Using X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller surface area measurement, ultraviolet-visible diffuse reflection spectra, and photoluminescence spectroscopy, the effect of mechanical milling on the photocatalytic activity of g-C3N4 photocatalyst was investigated. The rhodamine B, as a photodegrading goal, was used to evaluate the photocatalytic activity of g-C3N4. The experimental results indicate that the milling treatment is an effective method to improve the photocatalytic activity of g-C3N4. The enhanced photocatalytic activity was attributed to the improvement in catalyst’s surface area and dye adsorption on catalyst surface. Moreover, checking the luminescence properties of g-C3N4, it is found that the photocatalytic active sites on g-C3N4 are likely the same as luminescence sites.  相似文献   

8.
LiMn2O4xFx prepared by the sol-gel method has a perfect crystal formation. The crystal particle size of the material was medium and distributed uniformly. The substitution of F for O increased the specific capacity of the material at the cost of the cycleability. The explanation of this results is that the F decreases the valence of Mn, that is, more Mn3+ and less Mn4+ exist in the material. The increase of Mn3+ will improve the initial specific capacity and Mn3+ is the original reason for Jahn-Teller effect that caused the poor cycleability of the cathode material by the micro-distortion of the crystal structure. In addition, the expanded measurement of the crystal lattice is also the reason for the poor cycleability. Therefore, the results of F-substitution and cation-substitution are opposite. If the two methods are combined, they can compensate the inability each other and the satisfactory results may be obtained. XIA Jun-lei: Born in 1977 Funded by the National Natural Science Foundation of China (No. 59972026)  相似文献   

9.
The Sm3+-doped SrO-Al2O3-SiO2 (SAS) glass-ceramics with excellent luminescence properties were prepared by batch melting and heat treatment. The crystallization behavior and luminescent properties of the glass-ceramics were investigated by DTA, XRD, SEM and luminescence spectroscopy. The results indicate that the crystal phase precipitated in this system is monocelsian (SrAl2Si2O8) and with the increase of nucleation/crystallization temperature, the crystallite increases from 66 % to 79 %. The Sm3+-doped SAS glass-ceramics emit green, orange and red lights centered at 565, 605, 650 and 715 nm under the excitation of 475 nm blue light which can be assigned to the 4G5/26 H j/2 (j=5, 7, 9, 11) transitions of Sm3+, respectively. Besides, by increasing the crystallization temperature or the concentration of Sm3+, the emission lights of the samples located at 565, 605 and 650 nm are intensified significantly. The present results demonstrate that the Sm3+-doped SAS glass-ceramics are promising luminescence materials for white LED devices by fine controlling and combining of these three green, orange and red lights in appropriate proportion.  相似文献   

10.
Preparation and thermoelectric properties of nanostructured n-type Mg2Si bulk materials were reported. Nanosized Mg2Si powder was obtained by mechanical milling of the microsized Mg2Si powder prepared by solid-state reaction. The bulk materials with 30 nm and 5 µm were prepared by spark plasma sintering of the nanosized and microsized Mg2Si powder, respectively. Both the samples show n-type conduction and the Seebeck coefficient of the sintered samples increase determinately with the grain size decrease from 5 µm to 30 nm. On the other hand, the electrical and thermal conductivity decrease with the decrease of grain size. Accordingly, decreasing their grain size increases their thermoelectric-figure-of-merit. A maximum thermoelectric figure of merit of 0.36 has been obtained for the nanostuctured Mg2Si sample at 823 K, which is 38% higher than that of microsized Mg2Si bulk materials and higher than results of other literatures. It could be expected that the properties of the nanocomposites could be further improved by doping optimization.  相似文献   

11.
Monodispersed spheroidal SnO2 nanocrystals with the grain size of 8–30 nm were synthesized by the precipitation method using SnCl4·5H2O (stannic chloride hydrate) as raw materials. Differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD) and transmission electron microscope (TEM) were used to characterize the structure of SnO2 nanocrystals. The influences of the calcination temperature and time on the lattice constant, the lattice distortion and the grain size of SnO2 nanocrystals were discussed based on the XRD results. The grain growth kinetics of SnO2 nanocrystals during calcination process was simulated with a conventional grain growth model which only took into account of diffusion and with a new isothermal model proposed by our group, which took into account of both diffusion and surface reactions. Using conventional model, the grain growth rate constant of SnO2 crystals is 1.55×104 nm5/min with a pre-exponential factor of 5 and an activation energy of 108.62 kJ/mol. Compared with the convention model, the new isothermal model is more realistic in reflecting the grain growth behavior of SnO2 nanocrystals during the calcination process. This indicates that the grain growth of SnO2 nanocrystals is controlled by both diffusion and reaction factors, and the effect of surface reactivity on the grain growth of SnO2 nanocrystals could not be ignored. A combined activation energy estimated with the new isothermal model is 53.46 kJ/mol.  相似文献   

12.
Manganese dioxide was synthesized by electrodeposition method with Mn (CH3COO)2?4H2O as a raw material. La(NO3)3?6H2O was doped in electroyte during the preparing process to improve the performance of MnO2 electrodes. The micrographs, crystal structure and element content of electrodes were analyzed by SEM, XRD and atomic absorption spectroscopy, respectively. It is found that the La content ratio in the dioxide can be easily controlled by adjusting the composition of the plating solution. Appropriate amoun...  相似文献   

13.
The solid solution characteristics of Pb(B1/3Nb2/3)O3-based (B=Zn^2+, Mg^2+, Ni^2+) composite ceramics prepared by two-phase mixed-sintering method were developed based on dielectric measurements. Results show that there are double dielectric peaks for PZN-based composite ceramic, implying two phases coexist. However single dielectric peak was presented in PMN- and PNN-based composite ceramics, respectively. It is indicated that obvious solid solution reaction exists during the sintering process of these two systems. The effects of B-site ion difference on the solid solution characteristics were discussed by crystal chemistry. SEM was employed to investigated the microstructures of composite ceramics. The influences of solid solution reaction on grain growth were discussed.  相似文献   

14.
ZrO2/Ni nanocomposite was produced via pulse electrodeposition using a nickel sulfmate bath. The effects of main factors including pH value, temperature T, current density Dk and ZrO2 content p on the electrodeposit were dealt with by the Taguchi method. Experimental results show that the current density and ZrO2 content affect the electrodepositing process significantly. Nanocomposite with an average grain size of about 50 nm and ZrO2 content of up to 0.4 wt% was produced under the optimal condition. The Young's modulus of the achieved composite is similar to that of polycrystalline Ni. The microhardness is much higher than that of common pure Ni, primarily due to the ultrafine grains of Ni matrix by the Hall-Petch mechanism. The homogeneous dispersion of stiff ZrO2 particles in the Ni matrix acting as dislocation pinning and microcrack pinning also results in the strengthening effect.  相似文献   

15.
Nano fluorescent powder of Y4Al2O9: Eu3+ was synthesized by sol-gel method. The XRD shows that the product prepared at 900°C is pure-phase Y4Al2O9: Eu3+. The Y4Al2O9 powder is nano-size crystal testified by BF and ED analysis of TEM. The grain diameter of Y4Al2O9 is in the range between 20 and 50nm, and its average is 30 nm. The luminescent spectra show that Eu3+ ious occupy two kinds of sites in Y4Al2O9 crystal lattice. One is in the strict inversion center, and the other is in off lying inversion center. When excited with UV light (λ=254nm), Y4Al2O9: Eu3+ exhibits an orange emission bond at λ=590 nm due to the5Do7F1 transition and a red emission band at λ=610 nm due to5Do7F2 transition. YUAN Xi-ming: Born in 1951 Funded by Key Scientific and Technological Project of Hubei Province (2001 AA102A03)  相似文献   

16.
The MoS2 microspheres with high specific surface area assembled by ultrathin nanosheets have been successfully synthesized by a facile and environmentally friendly reaction in a closed reactor at moderate temperatures. The solid-state assembly was realized by a simple calcination process, and the annealing temperature played a key role in the formation of the final microspheres. The influences of reaction temperature were carefully investigated. A possible formation mechanism about the solid-state assembly was proposed based on the experimental results.  相似文献   

17.
Raw Mg,Si powder were used to fabricate Mg2Si bulk thermoelectric generator by spark plasma sintering (SPS).The optimum parameters to synthesize pure Mg2Si powder were found to be 823 K,0 MPa,10 min with excessive content of 10wt% Mg from the stoichiometric Mg2Si.Mg2Si bulk was synthesized and densified simultaneously at low temperature (823 K) and high pressure (higher than 100 MPa) from the raw powder,but Mg,Si could not react completely,and the sample was not very dense with some microcracks on the surface.Then,Mg,Si powder reacted at 823 K,0 MPa,10 min in SPS chamber to form Mg2Si green compact,again sintered by SPS at 1023 K,20 MPa,5 min.The fabricated sample only contained Mg2Si phase with fully relative density.  相似文献   

18.
Highly ordered Bi4Si3O12 micro-crystals were prepared at normal atmosphere. Phase identification of the prepared crystals was accomplished by X-ray diffractometer (XRD). Domain structure and defects were characterized by environmental scanning electron microscopy (ESEM). XRD shows that the obtained micro-crystals are of eulytite structure with chemical formulation of Bi4Si3O12. A highly ordered growth pattern is confirmed due to the faster growth of the {124} faces than that of the {204} faces by ESEM. The growing process of the domain structure is of pollen parent and filial generation pattern. The filial generations of Bi4Si3O12 crystals are generated from the pollen parent. Cracks generate from the defect areas and propagate along the {124} faces due to their lower binding energy under a proper temperature gradient, contributing to the total transcrystalline fracture. It is confirmed that the generation and development of the voids in the crystal grains can be developed when unmatched dimensions of the two opposite faces are formed. And the development of the voids is dependent on the dimensions and orientations of the two opposite faces. Supported by the Innovation Research Team Funds of Shaanxi University of Science & Technology (Grant No. SUST-A04)  相似文献   

19.
The structure and properties of Mg-doped SrBi4Ti4O15(SBT) were dicussed. Mg substitution into SBT had two possibilities states with the dopant amount variety. Mg cation substituted mostly into Sr^2+ and the amount proportion was 68.11%.Mg ion will substitute into Ti ion site in perovskite layer when the doping amount increases. Polarization increases sharply when x=0.1 and then decreases becauses of the domain pinning. The Curie temperature of Mg-doped SBT is about 300 ℃ and there is a broad diffuse phase transition near Tc with a flat peak near the Ta of SBT.  相似文献   

20.
Nanocrystalline Gd1.77Yb0.2Er0.03O3 samples were prepared by combustion and precipitation methods. Structures and upconversion luminescence properties of samples were studied. The results of XRD show that all samples are cubic structure, the average crystallite size could be calculated as 23 nm and 39 nm, respectively. The lattice constants were obtained. The FT-IR spectra were measured to investigate the vibrational feature of the samples. Upconversion luminescence spectra of samples under 980 nm laser excitation were investigated. The strong red emission of samples were observed, and attributed to 4F9/2→4I152 transitions of Er^3+ ions, the emission intensity for sample synthesized by precipitation method is stronger compared to that of combustion method. The possible upconversion luminescence mechanisms in nanocrystalline Gd1.77Yb0.2Er0.03O3 were discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号