首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A new technique for measuring thermal conductivity with significantly improved accuracy is presented. By using the Peltier effect to counterbalance an imposed temperature difference, a completely isothermal, steady-state condition can be obtained across a sample. In this condition, extraneous parasitic heat flows that would otherwise cause error can be eliminated entirely. The technique is used to determine the thermal conductivity of p-type and n-type samples of (Bi,Sb)2(Te,Se)3 materials, and thermal conductivity values of 1.47?W/m?K and 1.48?W/m?K are obtained respectively. To validate this technique, those samples were assembled into a Peltier cooling device. The agreement between the Seebeck coefficient measured individually and from the assembled device were within 0.5%, and the corresponding thermal conductivity was consistent with the individual measurements with less than 2% error.  相似文献   

2.
For bulk thermoelectrics, improvement of the figure of merit ZT to above 2 from the current values of 1.0 to 1.5 would enhance their competitiveness with alternative technologies. In recent years, the most significant improvements in ZT have mainly been due to successful reduction of thermal conductivity. However, thermal conductivity is difficult to measure directly at high temperatures. Combined measurements of thermal diffusivity, specific heat, and mass density are a widely used alternative to direct measurement of thermal conductivity. In this work, thermal conductivity is shown to be the factor in the calculation of ZT with the greatest measurement uncertainty. The International Energy Agency (IEA) group, under the implementing agreement for Advanced Materials for Transportation (AMT), has conducted two international round-robins since 2009. This paper, part II of our report on the international round-robin testing of transport properties of bulk bismuth telluride, focuses on thermal diffusivity, specific heat, and thermal conductivity measurements.  相似文献   

3.
Different exchange correlation potential approximations are used to examine electronic, optical, and thermoelectric properties of XNMg3(X=P, As, Sb, and Bi) antiperovskite compounds. Band structures of the compounds are direct in nature. Within a high-energy range (2–6 eV), these materials exhibit maximum levels of optical conductivity, and these materials may therefore be used in radiation detectors and solar cells. Optical properties such as dielectric function, optical conductivity, reflectivity, refractive indices and absorption coefficients vary in transitions from P to Bi. Furthermore, calculated peaks of conductivity and absorption coefficient values decrease with increasing photon energy. With respect to thermoelectric properties, electrical conductivity, Seebeck coefficient and thermal conductivity levels vary with increase in temperature, thus resulting in the formation of thermoelectric materials.  相似文献   

4.
In this paper we report the use of photothermal techniques such as Thermal lens (TL) spectrometry, Photoacoustic and heat capacity, ρcp, to determine the thermo-optical parameters, such as thermal conductivity (K), thermal diffusivity (D), specific heat (cp) and the optical path dependence with temperature (ds/dT), of an undoped polycrystalline 3C-SiC. To our knowledge, this is the first time that Thermal lens technique is used for wide band-gap systems. Results obtained for the polycrystalline sample with TL technique indicates that ds/dT is negative at room temperature. Moreover, the obtained values of thermal diffusivity and thermal conductivity are in good agreement with that found in the literature, indicating that the phototermal techniques can be used to obtain the referred parameters in circumstances where other techniques cannot be used, for example, in harsh environments.  相似文献   

5.
The thermal conductivity of low-dielectric-constant (low-k) SiOC:H and SiC:H thin films has been measured as a function of porosity using a heat transfer model based on a microfin geometry and infrared thermometry. Microscale specimens were patterned from blanket films, released from the substrate, and subsequently integrated with the experimental setup. Results show that the thermal conductivity of a dense specimen, 0.7 W/mK, can be reduced to as low as 0.1 W/mK by introducing 30% porosity into it. The measured thermal conductivity shows a nonlinear decrease with increasing porosity that approximately follows the porosity-weighted simple medium model for porous materials. Neither the differential effective medium nor the coherent potential model could predict the density dependence of the thermal conductivity. These results suggest that more careful consideration is required for application of generic porous materials modeling to low-k dielectrics.  相似文献   

6.
Thermoelectrics are being rapidly developed for waste heat recovery applications, particularly in automobiles, to reduce carbon emissions. PbTe‐based materials with small (<20 nm) nanoscale features have been previously shown to have high thermoelectric figure‐of‐merit, zT, largely arising from low lattice thermal conductivity particularly at low temperatures. Separating the various phonon scattering mechanisms and the electronic contribution to the thermal conductivity is a serious challenge to understanding, and further optimizing, these nanocomposites. Here we show that relatively large nanometer‐scale (50–200 nm) Ag2Te precipitates in PbTe can be controlled according to the equilibrium phase diagram and these materials show intrinsic semiconductor behavior with high electrical resistivity, enabling direct measurement of the phonon thermal conductivity. This study provides direct evidence that even large nanometer‐scale microstructures reduce thermal conductivity below that of a macro‐scale composite of saturated alloys with Kapitza‐type interfacial thermal resistance at the same overall composition. Carrier concentration control is achieved with lanthanum doping, enabling independent control of the electronic properties and microstructure. These materials exhibit lattice thermal conductivity which approaches the theoretical minimum above ~650 K, even lower than that found with small nanoparticles. Optimally La‐doped n‐type PbTe‐Ag2Te nanocomposites exhibit zT > 1.5 at 775 K.  相似文献   

7.
The ability of a material to conduct heat influences many physical phenomena, ranging from thermal management in nanoscale devices to thermoelectrics. Van der Waals 2D materials offer a versatile platform to tailor heat transfer due to their high surface-to-volume ratio and mechanical flexibility. Here, the nanoscale thermal properties of 2D indium selenide (InSe) are studied by scanning thermal microscopy. The high electrical conductivity, broad-band optical absorption, and mechanical flexibility of 2D InSe are accompanied by an anomalous low thermal conductivity (κ). This can be smaller than that of low-κ dielectrics, such as silicon oxide, and it decreases with reducing the lateral size and/or thickness of InSe. The thermal response is probed in free-standing InSe layers as well as layers supported by a substrate, revealing the role of interfacial thermal resistance, phonon scattering, and strain. These thermal properties are critical for future emerging technologies, such as field-effect transistors that require efficient heat dissipation or thermoelectric energy conversion with low-κ, high electron mobility 2D materials, such as InSe.  相似文献   

8.
The phonon thermal conductivity of misfit-layered Ca3Co4O9 has been calculated by perturbed molecular dynamics using a classical force field. Detailed numerical analyses reveal that, in spite of its smaller cross-sectional area, the CoO2 layer transports more heat than the thicker rock salt (RS) layer, although its local thermal conduction is more suppressed than in another layered cobaltite, Na x CoO2. The origins of these differences have been elucidated through careful examination of the atomic arrangements in each layer. Since thermal conduction in the RS layer can be reduced without deteriorating electronic properties for which the CoO2 layer is responsible, it is suggested that the RS layer should be modified to further suppress the overall in-plane thermal conductivity. Computational experiments with increasing number of Ca–O planes in the RS layer showed the opposite trend to what can be predicted based on the misfit between two dissimilar layers. Further analyses to reveal the origin of these unexpected results provide yet another strategy to further decrease the thermal conductivity, namely to control the dynamic interference between atoms across the interface between two layers.  相似文献   

9.
In this paper, an opto-thermal model is presented in order to specify the dominant thermal phenomena in organic solar cells (OSCs), as rather low efficiency photovoltaic devices. This model is capable of predicting the amount of optical heat generation (Qth_opt), also the transient and steady state thermal behavior of an organic photovoltaic cell combining both the optical and thermal models. In a typical organic solar cell, Qth_opt plays a significant role in heating up the device while the electric heat generation (Qth_elec) does not effectively have such a role. Developing an optical model for a solar cell, Qth_opt can be determined in every position of the device; also, the contribution of each layer in heat generation is precisely specified. The device thermal behavior is predicted by feeding the thermal model with Qth_opt. This is done for an organic solar cell with a typical architecture and it is shown that thermal convection and radiation are two determinative thermal phenomena while conduction plays a minor role; furthermore, the electrodes, Aluminum (Al) cathode and Indium Tin Oxide (ITO) anode, are two strong light absorbers which contribute to more than 80% of optical heat generation. Assuming Stefan–Boltzman radiation loss, the temperature rise for a typical single junction OSC is estimated under different conditions. The device temperature rise might be even larger for other architectures consisting of several layers depending on their thicknesses and absorption coefficients. This temperature increase enhances the OSCs’ efficiency while degrading the lifetime. The model can be applied to thermal analysis of other types of photovoltaic cells and optoelectronic devices with minor modification.  相似文献   

10.
The p-type Bi0.4Sb1.6Te3 alloys are prepared using a new method of mechanical alloying followed by microwave-activated hot pressing (MAHP). The effect of sintering temperature on the microstructure and thermoelectric properties of Bi0.4Sb1.6Te3 alloys is investigated. Compared with other sintering techniques, the MAHP process can be used to produce relatively compact bulk materials at lower sintering temperatures owing to its unique sintering mechanism. The grain size of the MAHP specimens increases gradually with the sintering temperature and a partially oriented lamellar structure can be formed in some regions of specimens obtained. The formation of the in situ-generated nano-phase is induced by the arcing effect of the MAHP process, which enhances the phonon scattering effect and decreases the lattice thermal conductivity. A minimum lattice thermal conductivity of 0.41 W/(m·K) and a maximum figure of merit value of 1.04 are obtained at 100°C for the MAHP specimen sintered at 325°C. This technique may also be extended to other functional materials to obtain ultrafine microstructures at low sintering temperatures.  相似文献   

11.
For decades, continuous attempts have been made to improve the figure of merit (ZT) of thermoelectrics. The theory behind the Seebeck effect itself is well researched, but the problem with ZT is related to materials properties that offset one another. This work analyzed the link between the site energy distributions and thermal conductivity of oxidized poly(3,4-ethylenedioxythiophene-tosylate) (PEDOT:Tos), which was reported to be a good organic thermoelectric. To understand how heat flow was affected by “disorder” in PEDOT:Tos and the associated electron–phonon interactions, we computed the values of the thermal conductivity κ and ZT using materials parameters extracted from the open literature. By varying the values of the parameters separately, we were able to identify their individual influence on κ and ZT. Our results suggest that ZT is most sensitive to changes in σ, the bandwidth of the density of states (DOS) of the transport sites, and less so to changes in n eff, the effective carrier density. Our simulations also suggested that ZT could become exceptionally large (approaching a value of ~20) if σ were lowered to 1 meV to 2 meV. This would be a tremendous approach to increase ZT in oxidized PEDOT:Tos.  相似文献   

12.
The demand for flexible conductive materials has motivated many recent studies on conductive polymer–based materials. However, the thermal conductivity of conductive polymers is relatively low, which may lead to serious heat dissipation problems for device applications. This review provides a summary of the fundamental principles for thermal transport in conductive polymers and their composites, and recent advancements in regulating their thermal conductivity. The thermal transport mechanisms in conductive polymer–based materials and up‐to‐date experimental approaches for measuring thermal conductivity are first summarized. Effective approaches for the regulation of thermal conductivity are then discussed. Finally, thermal‐related applications and future perspectives are given for conductive polymers and their composites.  相似文献   

13.
A theoretical investigation of the lattice thermal conductivity of nanostructured materials based on Bi–Sb–Te is presented. The calculations were based on relaxation time approximation and took into account both the real phonon spectra, obtained from first-principles by use of density functional theory, and the anisotropy of phonon relaxation time. Phonon relaxation time data were determined from experimental values of the lattice thermal conductivity. The decrease of the thermal conductivity caused by the nanostructure was compared with results from calculations based on the linear Debye approach. Estimation showed that phonon boundary scattering can lead to a 55% decrease of thermal conductivity for a grain size of ~20 nm in the Debye approximation. Taking the nonlinearity of the acoustic phonon spectrum into account leads to a 20% larger decrease of the thermal conductivity because of boundary scattering. The reason is that consideration of the real phonon spectrum increases the relative contribution to thermal conductivity of acoustic phonons with low frequencies that are scattered more strongly at nanograin boundaries. Similarly, estimation of lattice thermal conductivity reduction as a result of phonon scattering by nanoinclusions gave an 8% larger decrease when the real phonon spectrum was used rather than the linear Debye approximation. For such a substantial decrease of lattice thermal conductivity, the effect of the optical phonons was estimated; it was shown that optical phonons can reduce the change of thermal conductivity as a result of grain boundary scattering by no more than 10%. Finally, the minimum lattice thermal conductivity was estimated to be 0.07 W/m K because of acoustic modes (0.09 W/m K in the Debye approach) and 0.14 W/m K when the contribution of optical modes was also taken into consideration.  相似文献   

14.
The structure and electrical and optical properties of heterostructures formed on the surface of single-crystal silicon wafers as a result of the heat treatment and pulsed photon treatment of Ti films in oxygen, air, and nitrogen are investigated. It is shown that a TiO2/Ti5Si3/p-Si heterostructure is formed upon heat treatment in air, whereas a TiO2/TiSi2/p-Si heterostructure is formed upon photon treatment. It is established that rutile films with pronounced n-type conductivity are formed as a result of the heat treatment of Ni-doped Ti films in oxygen. Rutile films with p-type conductivity are formed upon the thermal annealing of Ti films in air with subsequent photon treatment in nitrogen.  相似文献   

15.
16.
Many efforts in material science have been made to hinder heat conductivity by phonons while maintaining reasonable electrical conductivity. Herein we present calculations for a completely novel technological approach that can be implemented in a wide range of thermoelectric materials, which leads to almost complete blockade of thermal conductivity due to phonon propagation but leaves the electrical conductivity unaltered. Suitable parameters for the fabrication of such metamaterials are presented, resulting in tremendously increased ZT-values for thermoelectric devices. In addition, feasibility studies for combinations with low-dimensional electronic materials are presented.  相似文献   

17.
Superlattices with one-dimensional (1D) phonon confinement were studied to obtain a low thermal conductivity for thermoelectrics. Since they are composed of materials with a lattice mismatch, they often show dislocations. Like 1D nanowires, they also decrease heat transport in only one main propagation direction. It is therefore challenging to design superlattices with a thermoelectric figure of merit ZT higher than unity. Epitaxial self-assembly is a major technology to fabricate three-dimensional (3D) Ge quantum-dot (QD) arrays in Si. They have been used for quantum and solar-energy devices. Using the atomic-scale phononic crystal model, 3D Ge QD supercrystals in Si also present an extreme reduction of the thermal conductivity to a value that can be under 0.04 W/m/K. Owing to incoherent phonon scattering, the same conclusion holds for 3D supercrystals with moderate QD disordering. As a result, they might be considered for the design of highly efficient complementary metal–oxide–semiconductor (CMOS)-compatible thermoelectric devices with ZT possibly much higher than unity. Such a small thermal conductivity was only obtained for two-dimensional layered WSe2 crystals in an experimental study. However, electronic conduction in the Si/Ge compounds is significantly enhanced. The 0.04 W/m/K value can be computed for different Ge QD filling ratios of the Si/Ge supercrystal with size parameters in the range of current fabrication technologies.  相似文献   

18.
Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity (ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure–property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron–phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.  相似文献   

19.
Thermal conductivity is one of the most fundamental properties of solid materials. The thermal conductivity of ideal crystal materials has been widely studied over the past hundreds years. On the contrary, for amorphous materials that have valuable applications in flexible electronics, wearable electrics, artificial intelligence chips, thermal protection, advanced detectors, thermoelectrics, and other fields, their thermal properties are relatively rarely reported. Moreover, recent research indicates that the thermal conductivity of amorphous materials is quite different from that of ideal crystal materials. In this article, the authors systematically review the fundamental physical aspects of thermal conductivity in amorphous materials. They discuss the method to distinguish the different heat carriers (propagons, diffusons, and locons) and the relative contribution from them to thermal conductivity. In addition, various influencing factors, such as size, temperature, and interfaces, are addressed, and a series of interesting anomalies are presented. Finally, the authors discuss a number of open problems on thermal conductivity of amorphous materials and a brief summary is provided.  相似文献   

20.
The phonon Boltzmann equation is solved numerically in order to study the phonon thermal conductivity of micro/nanostructured thin films with open holes in a host material. We focused on the size effect of embedded pores and film thickness on the decrease in thermal conductivity of the film. Simulations have revealed that the temperature profiles in the micro/nanostructured materials are very different from those in their bulk counterparts, due to the ballistic nature of the microscale phonon transport. These simulations clearly demonstrate that the conventional Fourier heat conduction equation cannot be applied to study heat conduction in solids at microscale. The effective thermal conductivity of thin films with micro/nanoholes is calculated from the applied temperature difference and the heat flux. In the present paper, the effective thermal conductivity is shown as a function of the size of the micro/nanoholes and the film thickness. For example, when the size of the hole becomes approximately 1/20th the phonon mean free path in a film, the thickness is 1/10th the mean free path of phonons and the effective thermal conductivity decreases to as low as 6% of the bulk value. The distribution of holes also affects the reduction in the effective thermal conductivity. Thin films embedded with staggered-hole arrays have slightly lower effective thermal conductivities than films with aligned-hole arrays. The cross-sectional area in the thermal transport direction is a significant parameter with respect to the reduction of thermal conductivity. The results of the present study may prove useful in the development of artificial micro/nanostructured materials, including thermoelectrics and low-k dielectrics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号