首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of zirconia (ZrO2) additions, in amounts equivalent to 5, 10, 20 and 40 mol%, to barium aluminosilicate, BaAl2Si2O8, was studied by examination of the phase assemblage of the mixtures after crystallization heat treatments at ∼ 1050°C or more using X-ray diffraction (XRD). In all cases, BaAl2Si2O8 gel crystallized into the hexacelsian polymorph. XRD results also indicated solid solubility of 10mol% or more ZrO2 in hexacelsian material. Precipitation of an additional phase, tetragonal ZrO2, occurred in the BaAl2Si2O8 material containing 20 mol% ZrO2. Also, 95% and 99% dense celsian ceramics were fabricated at 1450 and 1580°C sintering temperatures, respectively, using cold isostatically pressed pellets produced from powder mixtures containing 20 and 40 mol% ZrO2. These pellets also contained 20 wt% gel-derived lithia-doped celsian “seed” powder to promote hexacelsian to celsian transformation during sintering. Indentation hardness values for the 99% dense celsian ceramic without and with 20 mol% ZrO2 were 8.04 and 10.80 GPa, respectively. Scanning electron microscopy was used to examine the microstructures of these samples.  相似文献   

2.
Oxides reactions with a High-chrome sesquioxide refractory   总被引:1,自引:0,他引:1  
In slagging coal-gasifier systems, the combination of oxides present as impurities in coal and combustion temperatures that can exceed 1650°C restrict the use of liner materials in the coal combustion chambers to refractories. In this study, the slag-refractory interactions of a new high chrome sesquioxide refractory was characterized. High-temperature cup tests showed that the molten oxides infused into the refractory and that the sesquioxide refractory reacts with the oxides in a manner similar to spinel phase refractories. Studies of the coal slag's individual oxide components showed CaO reacts with the chrome refractory to form a low melting Ca(CrO2)2. FeO reacts with the sesquioxide to form a interface layer of (Cr,Fe)3O4 spinel phase. Results of this study now make it possible to design studies for improving corrosion resistance to increase refractory life.  相似文献   

3.
Ternary composites of Polypropylene (PP)/ethylene-octene copolymer (POE)/Barium Sulfate (BaSO4)(PP/POE/BaSO4) were prepared through a two-step process: BaSO4 master-batches were first prepared through blending of BaSO4 and POE, then blending with PP. Two families of phase structure were confirmed through SEM and DSC, depending on their interfacial interaction. Separation of POE and BaSO4 filler was found when untreated or titanate coupling agent treated BaSO4 filler were used. Encapsulation of BaSO4 particles by POE elastomer was achieved by using BaSO4 master-batch prepared through reactive blending of BaSO4 with POE in the presence of maleic anhydride (MAH) and dicumyl peroxide (DCP). The mechanical properties of the composites greatly rely on the morphology. The yield strength and the impact toughness of a composite with core-shell morphology are higher than those of composites with separated morphologies, but the former has lower flexural modulus and elongation at break than the latter. The interfacial interaction was evaluated by semi-empirical equations developed previously. The deformation and toughening mechanisms of the composites were also investigated.  相似文献   

4.
B4C plates were immersed in liquid aluminum alloyed with Sc, Zr, and Ti to investigate the interfacial reactions between B4C and liquid aluminum at 730 °C. The influences of alloying elements on the interfacial microstructure and reaction products in terms of individual and combined additions were examined using a scanning electron microscopy (SEM) and a transmission electron microscopy (TEM). Results reveal that all three elements react with B4C and form interfacial layers that act as a diffusion barrier to limit the decomposition of B4C in liquid aluminum. The interfacial reactions and the reaction products in each system are outlined. Moreover, by the combined addition of Sc, Zr, and Ti, most of the Ti is enriched at the interface, which not only offers appropriate protection of the B4C but also reduces the consumption of Sc and Zr at the interface.  相似文献   

5.
Garnet-type Ta-doped Li7La3Zr2O12 (LLZTO) electrolyte suffers from unstable chemical passivation under air exposure, responsible for the poor interfacial wettability and conductivity with Li metal. Instead of conventional methods to remove surface contaminants by mechanical polishing, acid etching and high temperature reduction, herein we propose a simple strategy of interfacial gas release and detergency to smartly convert Li2CO3 passivation layer into ion-conductive Li3PO4 domains at mild temperature (∼200 ℃). The in-situ formation of PH3 vapor and its phosphorization enables a dramatic decrease of Li/garnet interfacial resistance down to 2 Ω cm2 at room temperature (RT). The improved interfacial wettability and conductivity endow the symmetric cells with ultra-stable galvanostatic cycling over 1500 h and high critical current density of 2.6 mA/cm2. The high coulombic efficiency of Li plating enables a high reversibility of solid-state NCM811/Li cells even under a low N/P ratio (∼4) and high cut-off voltage of 4.5 V at RT. The prototype of fluoride-garnet solid-state batteries are successfully driven as rechargeable system (rather than widely known primary battery) with high conversion capacity (400 ∼ 500 mAh/g) and high-rate performance (251.2 mAh/g at 3 C). This interface infiltration-detergency approach provides a practical solution to the achievement of high-energy solid-state Li metal batteries.  相似文献   

6.
A new composite processing technology characterized by hot-dip Zn–Al alloy process was developed to achieve a sound metallurgical bonding between Al–7 wt% Si alloy (or pure Al) castings and low-carbon steel inserts, and the variations of microstructure and property of the bonding zone were investigated under high-pressure torsion (HPT). During hot-dipping in a Zn–2.2 wt% Al alloy bath, a thick Al5Fe2Znx phase layer was formed on the steel surface and retarded the formation of Fe–Zn compound layers, resulting in the formation of a dispersed Al3FeZnx phase in zinc coating. During the composite casting process, complex interface reactions were observed for the Al–Fe–Si–Zn (or Al–Fe–Zn) phases formation in the interfacial bonding zone of Al–Si alloy (or Al)/galvanized steel reaction couple. In addition, the results show that the HPT process generates a number of cracks in the Al–Fe phase layers (consisting of Al5Fe2 and Al3Fe phases) of the Al/aluminized steel interface. Unexpectedly, the Al/galvanized steel interface zone shows a good plastic property. Beside the Al/galvanized steel interface zone, the microhardnesses of both the interface zone and substrates increased after the HPT process.  相似文献   

7.
The compositions (1 −x)Ag2SO4−(x)BaSO4, wherex=0·01 to 0·6, were prepared by slow cooling of the melt. The extent of the solid solubility of Ba2+ in Ag2SO4 was determined by X-ray powder diffraction and scanning electron microscopy. The bulk conductivity of each sample was obtained using a detailed impedance analysis. The partial substitution of Ba2+ results in the enhancement of conductivity in compliance with the classical aliovalent doping theory. A simplistic model based on lattice distortion (expansion) due to partial substitution of Ag+ by the bigger Ba2+ has been considered to explain enhanced conductivity. Beyond solid-solubility limit (5·27 mole%) the BaSO4-dispersed Ag2SO4 conductivity follows the usual trend seen in binary systems. An increase in conductivity in this case is discussed in the light of interfacial reactions and surface defect chemistry. The maximum conductivity in 20 mole% BaSO4 dispersed Ag2SO4 is due to percolation threshold.  相似文献   

8.
《Materials Letters》2007,61(23-24):4622-4626
Pure microcrystalline barium molybdate BaMoO4 and barium tungstate BaWO4 materials were prepared by molten flux reaction using alkali metal nitrates as reaction media. The obtained crystals have rhombic shape and expose mostly (111) crystallographic planes. Their mean size depends on the flux temperature and the nature of the alkali metal cation. Monomeric molybdate and tungstate used as precursors yield target products already at 673 K whereas if polymerized ammonium oxosalts were used, then higher temperatures were necessary to obtain barium salts. The optimal temperature for the preparation of pure crystals with well defined shape was found to be near 773 K. UV–visible spectra have been measured to precise energy gaps in these important d0 transition metal compounds. The values of Eg for these two mixed oxides are 4.3 eV for BaMoO4 and 3.8 eV for BaWO4. Such values contradict to what can be expected from the known data on their structure and the relative electronegativity of W and Mo ions. The possible explanations of this observation are commented.  相似文献   

9.
《Composites Part A》2001,32(8):1021-1029
A method has been developed for the fabrication of small diameter, multifilament tow, fiber-reinforced ceramic matrix composites. Its application has been successfully demonstrated for the Hi-Nicalon/celsian system. Strong and tough celsian matrix composites, reinforced with BN/SiC-coated Hi-Nicalon fibers, have been fabricated by infiltrating the fiber tows with the matrix slurry, winding the tows on a drum, cutting and stacking of the prepreg tapes in the desired orientation, and hot pressing. The monoclinic celsian phase in the matrix was produced in situ, during hot pressing, from the 0.75BaO–0.25SrO–Al2O3–2SiO2 mixed precursor synthesized by solid state reaction from metal oxides. Hot pressing resulted in almost fully dense fiber-reinforced composites. The unidirectional composites having ∼42 vol.% of fibers exhibited graceful failure with extensive fiber pullout in three-point bend tests at room temperature. Values of yield stress and strain were 435±35 MPa and 0.27±0.01%, respectively, and ultimate strengths of 900±60 MPa were observed. Young's modulus of the composites was measured to be 165±5 GPa.  相似文献   

10.
Gels in the system BaO-Al2O3-SiO2 have been prepared from metal alkoxides and barium acetate. The processes during calcination and crystallization as a function of composition have been followed by means of DTA, TGA, IR and XRD. Three major regions of accelerated weight loss have been observed which correspond to the evaporation of physically adsorbed species, the oxidation of-Al(OOCCH3) and the oxidation of Ba(OOCCH3)2. The latter reactions are accompanied by strong exothermic DTA signals. The oxidation products of barium acetate tend to foam and to block the paths and channels for the oxygen supply and the removal of the volatile oxidation products, inhibiting a complete oxidation. Thus, the combustion of Ba(OOCCH3)2 is strongly dependent on the concentration, the sample volume and the heating conditions. IR shows that the gels heated up to 800 °C are structurally similar to glasses of the same composition. In all gels the metastable crystallization of hexacelsian is strongly preferred to the stable monoclinic celsian. DTA crystallization peaks appear between 960 and 1080 °C, depending on composition. In most samples hexacelsian is the only phase present, even after 5 h isothermal heat treatment.  相似文献   

11.
Interfacial reactions between Sn–20 wt.%In–2.8 wt.%Ag (Sn–20In–2.8Ag) Pb-free solder and Cu substrate at 250, 150, and 100 °C were investigated. A scallop-type η-Cu6Sn5 phase layer and a planar ε-Cu3Sn phase layer formed at the interface at 250 °C. The indium content in the molten solder near the interface was increased with the formation of the η-Cu6Sn5 phase; and the η-Cu6Sn5, Ag2In, Cu2In3Sn, and γ-InSn4 phases formed from the solidification of the remaining solder. At 100 and 150 °C, only the η-Cu6Sn5 phase was found at the interface. However, unusual liquid/solid reaction-like interfacial morphologies, such as irregular elongated intermetallic layers and isolated intermetallic grains, were observed in the solid-state reactions. These η phase layers had less Sn content than the Sn–20In–2.8Ag alloy, resulting in an excess Sn-rich γ-InSn4 phase accumulating at the interface and forming porous η layers on top of the initially formed dense η layers at 150 °C. At 100 °C, large elongated η grains were formed, whereas the interfacial layers remained almost unchanged after prolonged reaction. Based on the experimental evidence, the growth of the η phase was proposed to follow a diffusion-controlled mechanism at 250, 150 and 100 °C, while that of the ε phase was probably controlled by the reaction.  相似文献   

12.
The interfacial reactions between various molten metals and solid plates were investigated in this diffusion couple study. The molten metals were pure magnesium, pure aluminium, aluminium-rich Al-Mg alloy, and aluminium-rich Al-Cu alloys, and the solid plates were pure nickel plate, alumina plate, and nickel-plated alumina plate. The interfacial reactions in the diffusion couples were determined by using optical microscopy, scanning electron microscopy and electron probe microanalysis in regard to the formation of intermetallic phases, the dissolution rates of the nickel plates, and the morphology of the interfaces. Mg2Ni phase was found in the pure Mg/Ni plate diffusion couples, and the Al3Ni and Al3Ni2 phases were observed in the pure Al/Ni plate and Al-alloys/Ni plate diffusion couples. In the Al-Cu alloy/Ni-plated alumina plate diffusion couple, Al2O3 formed at the interface, while spinel particles were found in the diffusion couples of Al-7.4wt% Mg alloy/Ni-plated alumina plate. Experimental difficulty was encountered in preparing the diffusion couples with alumina plate, and a gap existing at the interface prohibited reactions between the molten metal with alumina plate.  相似文献   

13.
The effect of the Bi content on the formation of intermetallic compounds (IMCs) layers between the Sn-xBi-0.9Zn-0.3Ag lead-free solder (with x = 1, 2, 3 and 4, in weight percent, hereafter) and Cu substrate was investigated. The structure of the IMC layer in the soldered interface varies apparently with increasing the Bi content. When the Bi content is 1 wt%, the interface soldered is consisted of CuZn and Cu6Sn5 IMC layers, which are separated by an intermediate solder layer. As the Bi content increases, the spalling phenomenon tends to disappear. Moreover, the layer between the Sn-2Bi-0.9Zn-0.3Ag solder and Cu substrate is thicker than others. The evolution of the soldered interfacial structure could be attributed to the existence of Bi.  相似文献   

14.
Doloma carbon bricks with graphite contents of approximately 2 wt% are widely used in the production of stainless steels in argon oxygen decarburisation (AOD) or in vacuum oxygen decarburisation (VOD) vessels as lining material. The application of doloma refractories is connected with metallurgical benefits such as high oxidic stability of its oxides, and the ability to bond sulphur from the hot metal. The production and application of carbon bonded refractories is linked with environmental harmful emissions in the broadest sense. Amongst the aspect of environmental friendly refractory systems this work has observed and shown the interaction of functional ceramic material TiO2 with the organic binder system. In the centre of this work is the aspect of increased residual carbon content of the binder resin due to TiO2 addition. The increased residual carbon content of the binder resin connected with improved mechanical, physical and thermomechanical properties due to sub‐micro scaled TiO2 addition offers the feasibility to reduce the total carbon content without downgrading the brick properties. This aspect has not been observed yet and is of high interest with respect to reduced emissions and environmental friendly refractories. Previous works have investigated the influence of TiO2 on other carbon bonded refractory systems such as alumina carbon and magnesia carbon. As illustrated in this work and previous work, TiO2 is working completely different in the Doloma Carbon system from other systems.  相似文献   

15.
Carbon fibre-reinforced aluminium composites were pressurelessly cast by using K2ZrF6 as the wetting promotion agent. Transmission electron microscopy (TEM) and energy dispersed analysis of X-rays, (EDAX) were used. The results showed that interfacial reactions were very active after K2ZrF6 treatment. This was caused by the diffusion and reaction of zirconium in the surface of carbon fibres or in the SiC coating. Silicon alloying of aluminium could suppress the interfacial reactions by decreasing the activity of zirconium and changing intermetallic Al3Zr to Zr3Al4Si5, and building up the phase equilibrium between SiC, aluminium and silicon. The requested silicon content was higher than the equilibrium content of Al-Si-SiC system to suppress the SiC/Al interfacial reaction. A perfect interface was achieved in SiC-coated carbon fibre Al-12 wt% Si composite.  相似文献   

16.
All-solid-state Li metal batteries have attracted extensive attention due to their high safety and high energy density. However, Li dendrite growth in solid-state electrolytes (SSEs) still hinders their application. Current efforts mainly aim to reduce the interfacial resistance, neglecting the intrinsic dendrite-suppression capability of SSEs. Herein, the mechanism for the formation of Li dendrites is investigated, and Li-dendrite-free SSE criteria are reported. To achieve a high dendrite-suppression capability, SSEs should be thermodynamically stable with a high interface energy against Li, and they should have a low electronic conductivity and a high ionic conductivity. A cold-pressed Li3N–LiF composite is used to validate the Li-dendrite-free design criteria, where the highly ionic conductive Li3N reduces the Li plating/stripping overpotential, and LiF with high interface energy suppresses dendrites by enhancing the nucleation energy and suppressing the Li penetration into the SSEs. The Li3N–LiF layer coating on Li3PS4 SSE achieves a record-high critical current of >6 mA cm−2 even at a high capacity of 6.0 mAh cm−2. The Coulombic efficiency also reaches a record 99% in 150 cycles. The Li3N–LiF/Li3PS4 SSE enables LiCoO2 cathodes to achieve 101.6 mAh g−1 for 50 cycles. The design principle opens a new opportunity to develop high-energy all-solid-state Li metal batteries.  相似文献   

17.
Si3N4 ceramics were brazed using Au–Ni–V metal foils at 1423 K for different holding times. Effect of holding time on microstructure and mechanical properties of the joints was investigated. The results indicate that a reaction layer of VN exists at the interface between Si3N4 ceramic and filler alloy. With increasing holding time from 0 to 90 min, thickness of the VN reaction layer increases from 0.4 to 2.8 μm, obeying a linear relation. Mechanism of the interfacial reaction was discussed by calculating the formation of free energy of VN. No specific orientation relationship exists between VN reaction layer and Si3N4 ceramic. In addition, Ni3Si intermetallic compound appears in the joint when the holding time increases to 90 min, resulting in the deterioration of the joint strength.  相似文献   

18.
To improve the performance of low-carbon MgO–C refractories, the Cr3C2-coated flake graphite was synthesized by molten salt method, then the Cr3C2-coated flake graphite was added to low-carbon MgO–C refractories. In this work, the effects of reaction temperature, Cr/C mole ratio, and holding time on the synthesis of Cr3C2-coated flake graphite were studied. Furthermore, the effect of Cr3C2-coated flake graphite on the physical properties of low-carbon MgO–C refractories was evaluated. The results indicated that when the reaction temperature was 950 °C, Cr/C molar ratio was 1/2 and holding time was 3 h, the synthesized Cr3C2-coated flake graphite had fewer surface micropores and the crystallinity of Cr3C2 grains was high. In addition, the Cr3C2-coated flake graphite exhibited excellent oxidation resistance. MgO–C refractories containing 2 wt% Cr3C2-coated flake graphite exhibited more excellent physical properties. The results of nano CT detection system showed that the addition of Cr3C2-coated flake graphite promoted the densification of MgO–C refractories.  相似文献   

19.
The interface between metal matrix and ceramic reinforcement particles plays an important role in improving properties of the metal matrix composites. Hence, it is important to find out the interface structure of composite after re-melting. In the present investigation, the 2124Al matrix with 10 wt.% SiC particle reinforced composite was re-melted at 800 °C and 900 °C for 10 min followed by pouring into a permanent mould. The microstructures reveal that the SiC particles are distributed throughout the Al-matrix. The volume fraction of SiC particles varies from top to bottom of the composite plate and the difference increases with the decrease of re-melting temperature. The interfacial structure of re-melted 2124Al–10 wt.%SiC composite was investigated using scanning electron microscopy, an electron probe micro-analyzer, a scanning transmission electron detector fitted with scanning electron microscopy and an X-ray energy dispersive spectrometer. It is found that a thick layer of reaction product is formed at the interface of composite after re-melting. The experimental results show that the reaction products at the interface are associated with high concentration of Cu, Mg, Si and C. At re-melting temperature, liquid Al reacts with SiC to form Al4C3 and Al–Si eutectic phase or elemental Si at the interface. High concentration of Si at the interface indicates that SiC is dissociated during re-melting. The X-ray energy dispersive spectrometer analyses confirm that Mg- and Cu-enrich phases are formed at the interface region. The Mg is segregated at the interface region and formed MgAl2O4 in the presence of oxygen. The several elements identified at the interface region indicate that different types of interfaces are formed in between Al matrix and SiC particles. The Al–Si eutectic phase is formed around SiC particles during re-melting which restricts the SiC dissolution.  相似文献   

20.
Dissimilar welds of aluminium alloy AA6056 and titanium alloy Ti6Al4V were produced by a novel technique. AA6056 sheet was machined at one end to a U-slot shape, enabling the intake of the Ti6Al4V sheet. The Al-alloy U-slot was then butt welded by split laser beam without using a filling wire, thus making a weld by melting only the Al-alloy. Thereby the intermetallic brittle phase TiAl3 formed at the weld interface and affected mechanical properties. As a continuation of the previous work, the joint design was modified by chamfering Ti6Al4V to reduce the formation of interfacial TiAl3. It is shown in this work how this seemingly insignificant joint modification has refined microstructure and increased hardness and strength. The most impressive feature was the improved resistance to fatigue crack propagation whereby the fracture type in the fusion zone of AA6056 adjacent to the weld interface changed from partially intercrystalline to completely transcrystalline. Possible metallurgical processes leading to the property improvements are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号