共查询到10条相似文献,搜索用时 0 毫秒
1.
The assessment of flow along a vaulted wall (with two main finite radii of curvature) is of general interest; in biofluid mechanics, it is of special interest. Unlike the geometry of flows in engineering, flow geometry in nature is often determined by vaulted walls. Specifically the flow adjacent to the wall of blood vessels is particularly interesting since this is where either thrombi are formed or atherosclerosis develops. Current measurement methods have problems assessing the flow along vaulted walls. In contrast with conventional particle image velocimetry (PIV), this new method, called wall PIV, allows the investigation of a flow adjacent to transparent flexible surfaces with two finite radii of curvature. Using an optical method which allows the observation of particles up to a predefined depth enables the visualization solely of the boundary layer flow. This is accomplished by adding a specific dye to the fluid which absorbs the monochromatic light used to illuminate the region of observation. The obtained images can be analysed with the methods of conventional PIV and result in a vector field of the velocities along the wall. With wall PIV, the steady flow adjacent to the vaulted wall of a blood pump was investigated and the resulting velocity field as well as the velocity fluctuations were assessed. 相似文献
3.
This study was designed to examine the effects of the anastomotic angle on the flow and haemodynamic parameter distribution patterns of the proximal anastomoses, with emphasis on identifying site-specific haemodynamic features that could reasonably be expected to trigger the initiation and further development of anastomotic intimal hyperplasia. Particle image velocimetry measurements were carried out with three simplified glass proximal models under a physiological flow condition. The results revealed that the disturbed flow and the induced shear stress patterns including low recirculation flow, stagnation point, high wall shear stress, high temporal wall shear stress gradient, low time-averaged wall shear stress (TAWSS), and high oscillating shear index (OSI) occurred around the anastomotic joints and the flow field at proximal anastomosis was strongly affected by the anastomotic angle. Among the three models investigated, the 45 degrees backward anastomosis is found to have a smaller low-recirculation-flow region along the graft inner wall, non-stationary stagnation, and separation points, a higher TAWSS and smaller high-OSI low-TAWSS and low-OSI high-TAWSS regions. 相似文献
4.
The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions,inner flows in a double blade pump impeller,whose specific speed is 111,are measured under the five off-design conditions and design condition by using 3D PIV test technology.In order to ensure the accuracy of the 3D PIV test,the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied.The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005.Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained.Test results show that vortex exists in each condition,but the location,size and velocity of vortex core are different.Average absolute velocity value of impeller outlet increases at first,then decreases,and then increases again with increase of flow rate.Again average relative velocity values under 0.4,0.8,and 1.2 design condition are higher than that under 1.0 design condition,while under 0.6 and 1.4 design condition it is lower.Under low flow rate conditions,radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate,while that of relative velocities at the suction side near the pump shaft decreases.Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions.The research results can be applied to instruct the hydraulic optimization design of double blade pumps. 相似文献
5.
This paper proposes a general design methodology for conceptual design of microchannel systems by applying axiomatic design theory (ADT). As an example, this paper takes a microchannel system that is used to produce uniform microspheres based on the phase separation principle. There are two general design goals for this system: controllability of the size of microspheres and uniformity or narrow size distribution of microspheres. It is found that the conventional approach to this example system will result in a so-called “coupled design,” which is considered a poor design, according to ADT. This paper demonstrates how to change the coupled design for the example system to a better design called “decoupled design” (according to ADT). The proposed methodology can be applied to all the microchannel systems based on the phase separation principle and, as a matter of fact, can be used to generate many decoupled designs. The effectiveness of such a decoupled design is demonstrated through simulation. 相似文献
6.
Magnetic resonance velocimetry (MRV) is a versatile flow visualization technique that has been utilized for medical applications. Recently, MRV has been used to visualize engineering flows, but most engineers are still unfamiliar with the technique. In this paper, we introduce the basic principles and experimental configurations of MRV in detail and evaluate the accuracy of MRV applied to measure the mean velocity fields of turbulent flows in a circular pipe. A Philips Achieva 3.0 T Tx MRI scanner is used to provide a magnetic field and acquire resonance signals for flow visualization. Fully developed turbulent flows with Reynolds numbers of 6800, 9900 and 19400 were measured, and the axial mean velocity vectors were obtained with a spatial resolution of 0.5 mm for the three directions. Results show that the mean velocity profiles are in good agreement with reference data sets when properly scaled in both the inner and outer layers. 相似文献
7.
Mixing layers are sensitive to the mixing angle and turbulence in the primary streams. Although there is extensive available research on this rather basic flow, there are still no suggestions for a clearly best configuration. For example, the combination of a laminar initial boundary layer and a large mixing angle has received little attention. In this work we test a new experimental configuration with large mixing angle and laminar/turbulent initial boundary layer that was not examined experimentally by LDA and PIV. This setup is expected to be a representation of the initial conditions that must result in better mixing. A plane mixing layer with a velocity ratio of 0.6 is produced by rebuilding an open circuit wind tunnel. Extensive calibration tests on velocity profiles and Reynolds stresses established the position of the self similar region. Velocity field measurements with laser Doppler anemometer (LDA) and particle image velocimeter (PIV) showed enhanced mixing layer growth. PIV plots showed the presence of stream-wise and cross stream vortices in the self-similar region without any considerable change in turbulence characteristics to that of reported in the literature. The article presents a combination of different experimental results that give a deeper understanding of this very configuration. 相似文献
8.
A measuring system for studying liquid flows via the particle image velocimetry method has been developed. The main feature of this system is the use of a continuous-wave laser as an illuminating source. A diode-pumped solid-state laser is used for the first time in such measuring system. The use of continuous illumination allows one to cancel synchronization of the operation of the illuminating source and a digital video camera used to record flow images. Issues related to the dynamic range of the described system are discussed in detail. Two examples of using this system are presented: studying flows in a trace of a body towed in a stratified liquid and studying liquid flows induced by focused ultrasound. Original Russian Text ? D.A. Sergeev, 2009, published in Pribory i Tekhnika Eksperimenta, 2009, No. 3, pp. 138–144. 相似文献
9.
An x-ray particle image velocimetry (PIV) system using a cone-beam type x-ray was developed. The field of view and the spatial resolution are 36 × 24.05 mm(2) and 20 μm, respectively. The three-dimensional velocity field was reconstructed by adopting the least squares minimum residue and simultaneous multiplicative algebraic reconstruction techniques. According to a simulation study with synthetic images, the reconstructions were acceptable with 7 projections and 50 iterations. The reconstructed and supplied flow rates differed by only about 6.49% in experimental verification. The x-ray tomographic PIV system would be useful for 3D velocity field information of opaque flows. 相似文献
10.
Journal of Mechanical Science and Technology - The abnormal growth of tissue, called pannus, is frequently found in patients who have an implanted prosthetic heart valve. Its growth is related to... 相似文献
|