首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
VES自转向盐酸液变粘特性研究   总被引:7,自引:0,他引:7  
赵增迎  杨贤友  连胜江  张秀丽 《油田化学》2005,22(4):307-309,295
实验研究了未指名孪二连型粘弹性表面活性剂(VES)自转向盐酸液的变粘特性。5%VES HCl CaCl2模拟酸液的粘度在pH值高于-0.57后迅速上升,pH值1~2时有最大值,这与前人的实验结果略有不同。将2%~6%VES 1%HCl 18.25?Cl2模拟酸液的pH值调至~2,得到的凝胶粘度随VES浓度增大而增大,随温度升高(25~70℃)经历不同的极大值(30~50℃)。5%VES 20%HCl酸液与CaCO3完全反应、pH升至4~5时,形成的凝胶粘度也随温度升高而经历极大值(67℃),但在30~40℃区间粘度急剧波动。G′和G″的频率关系曲线表明0.1%HCl 5%VES 18.25?Cl2模拟酸液的弹性和粘性均大于含0.01%和1.0%HCl的模拟酸液。pH值改变(0.17~13.0)不会使6%VES溶液增粘;加入56~219 g/L CaCl2不会使20%HCl 6%VES酸液增粘;加入3.4mol/L Na 并调pH值至中性或加入2.3 mol/L Ca2 并调pH值至弱酸性,使0.1%HCl 5%VES酸液粘度增大至78~80 mPa.s;因此同时加大pH值和阳离子(Ca2 或Na )浓度,才能使VES酸液增粘。图7表2参10。  相似文献   

2.
二氧化碳泡沫压裂液研究与应用   总被引:8,自引:1,他引:7  
简介了泡沫压裂液发展现状及影响CO2泡沫压裂液性能的主要因素。基于添加剂的研制(起泡剂FL 36,酸性交联剂AC 8)和筛选,得到了CO2泡沫压裂液的典型配方:0 6%HPG 1 0%FL 36 1 0%粘土稳定剂 0 1%破乳助排剂 0 06%过硫酸铵 1 5? 8,测定了该配方的各项性能。基液粘度75mPa·s(25℃,170s-1),pH值7 0;泡沫半衰期300min(25℃,0 1MPa),pH值4 0。泡沫干度(泡沫质量)为70%和60%的CO2泡沫压裂液在40~50min内可维持粘度>80mPa·s。在流动回路装置上测得泡沫干度增大时粘度增大,在高干度下形成气泡细小均匀的稳定泡沫。滤失系数在2 9×10-4~4 2×10-4范围。对岩心渗透率的伤害率为13 6%(22支岩心平均值),而水基压裂液的伤害率高达60%。在70℃数小时完全破胶。大粒径(0 9mm)陶粒在干度40%和70%的CO2泡沫压裂液中沉降速度<0 06cm/s。常温、1Hz下G′和G″随干度增大而增大,且G″>G′。江苏油田低渗油藏3口井实施CO2泡沫压裂取得了明显增油效果。表4参3。  相似文献   

3.
中高温VES压裂液用表面活性剂NTX-100   总被引:2,自引:0,他引:2  
赵梦云  赵忠扬  赵青  尹燕 《油田化学》2004,21(3):224-226
由长链脂肪酸合成了多头季铵盐型表面活性剂NTX 100(有效物≥50%)。由4.0%NTX 100、0.3%pH调节剂、3.0%KCl和清水组成的压裂液体系,20℃、40℃、60℃下的粘度(170s-1)分别为146、134、97mPa·s,在室温放置1个月后粘度基本不变。粘温曲线表明,NTX 100体系压裂液的最佳pH值为6.0~6.5,在100℃下4.5%NTX 100、0.2%pH调节剂、2.1%KCl体系的粘度保持在50mPa·s。在振荡频率0.1HZ、温度20~90℃范围,随温度升高,上述4.5%NTX 100体系的G′值先略下降,高于45℃后大幅上升,高于约68℃后又持续下降;G″值则先基本稳定,高于60℃后上升;在90℃时G′和G″均大于20℃时的值。上述4.5%NTX 100体系与20%(以体积计)柴油混合后破胶,破胶液30℃粘度为14mPa·s,静置后分为三层,由上层油相体积计算,破乳率>70%,静置后的破胶液与等体积水混合后,粘度为4.2mPa·s。NTX 100耐温性良好,可用于110℃左右的中高温井压裂。图3表1参7。  相似文献   

4.
考察了羟丙基磺基甜菜碱VESBET-4浓度、pH值和无机盐的加入对体系黏度的影响,并评价了VES压裂液(2.5%表面活性剂+0.5%黏土稳定剂)的耐温抗剪切性能、携砂能力及破胶性能。结果表明:当转速达到250 r/min时,质量分数为2%的VESBET-4溶液的黏度可达到600mPa·s以上;该表面活性剂适于在中性及碱性条件下使用;且该表面活性剂与黏土稳定剂NH4Cl、KCl具有良好的配伍性,无机盐的加入基本不影响体系的黏度。该压裂液体系具有良好的耐温耐剪切性能,在温度70℃、剪切速率170s-1下的体系黏度仍高于50 mPa·s,60℃、170s-1下剪切2h后的体系黏度仍高于85mPa·s。同时,单颗砾石的沉降速率为0.95 cm/h,砂比为30%时的砂子沉降速率为1.11cm/h,说明该体系具有良好的携砂造缝能力。使用模拟地层水可对该压裂液体系进行破胶,破胶时间在1 h内,破胶后体系黏度可降至4.27 mPa·s以下。图5表2参12  相似文献   

5.
高温低伤害的有机硼锆CZB-03交联羟丙基瓜尔胶压裂液研究   总被引:3,自引:0,他引:3  
实验研究了有机硼锆交联剂CZB 0 3(有机锆交联剂OZ 1用一种复合吸附抑制剂处理后与等质量的有机硼交联剂OB 2 0 0的复配物 )与HPG的交联性能、冻胶耐温性和伤害性 ,实验体系为加有 0 .3%复合添加剂CA 0 3的0 .6 %HPG/CZB 0 3压裂液。该体系的最佳pH值为 9~ 11,适宜交联比为 10 0∶0 .3~ 0 .4 ,在温度≤ 4 0℃时延缓交联时间为 2~ 4min。该体系的耐温性高于 16 0℃ ,在 16 0℃、170s-1剪切 12 0min ,粘度保持 10 0mPa·s以上。该体系的滤失控制性能较好 ,加入 1%降滤失剂ZJ 1可使 16 0℃、3.5MPa滤失系数C3 (m/min0 .5)由 9.19× 10 -4降到6 .98× 10 -4。加入 0 .0 4 %专用破胶剂EB 0 3,在 16 0℃放置 2h后破胶液粘度为 5 .2mPa·s。CZB 0 3压裂液对支撑裂缝导流能力的伤害远小于OZ 1压裂液 ,略高于OB 2 0 0压裂液 ,在室温和 4 0~ 70MPa下 ,CZB 0 3,OZ 1,OB 2 0 0交联HPG压裂液的伤害率分别在 13.8%~ 16 .1% ,4 9.8%~ 5 1.2 % ,9.1%~ 11.7% ,平均值分别为 14 .7% ,5 0 .4 % ,10 .6 %。图 3表 3参 2。  相似文献   

6.
粘弹性胶束压裂液的形成与流变性质   总被引:14,自引:3,他引:11  
由C16、C18烷基三甲基季铵盐和助剂配制了压裂用表面活性剂VES 60。考察了VES 60/水及其他体系形成胶束凝胶的能力。得到了一种蠕虫状胶束和一种片状胶束的环境扫描电镜照片。测定了体积分数(下同)为5%的CTAC与NaSal、NaSal+KNO3水溶液形成的胶束凝胶的粘度(70℃)随剪切速率的变化,讨论了两种盐之间的协同作用。在不同温度(10~40℃)和10s-1下,4%VES 60水溶液形成胶束的动力学包括三个阶段:链分散,低粘度;链缔合,粘度快速增大;链动态平衡,粘度基本稳定。在170s-1下4%VES 60的胶束溶液的粘度随温度升高而下降,在50~80℃区间下降幅度很小,粘度约在60mPa·s上下,在80℃以上急剧降低。20℃时4%VES 60胶束溶液的流变性符合H B模型,k′=8.664Pa·sn′,n′=0.2678,τy=5.4Pa。随表面活性剂体积分数增大(2.0%~5.0%),30℃时VES 60胶束溶液的粘弹性参数G′,G″和η 增大,tanδ减小,即弹性增强而粘性相对减弱。图5表2参6。  相似文献   

7.
针对目前阳离子清洁压裂液存在的成本高、吸附造成的伤害大的问题,研发出了一种小分子阴离子型、抗剪切、低伤害、多功能的环保型清洁压裂液体系,其配方为:4%F-VES+0.5%KCl。室内性能评价结果表明,该压裂液的耐温耐剪切性良好,在80℃的表观黏度为40 mPa.s,在60℃连续剪切70 min后的黏度为67 mPa.s;在常温下与原油混合可迅速破胶,破胶液黏度小于5 mPa.s,表面张力为25 mN/m;静态悬砂速度为0.02~0.04cm/s;对岩心的伤害率为14.5%,比瓜胶压裂液和VES压裂液分别下降了58.6%和45.5%;对支撑剂导流能力的伤害率为9%,较VES压裂液下降了近74%;破胶液的驱油率为65%,与驱油剂WP-1相当。  相似文献   

8.
黏弹性表面活性剂(VES)压裂液由于具有无残渣、低摩擦、破胶完全等优点,越来越受到人们的重视.然而,由于价格高、耗用量大,进一步限制了VES的广泛应用,本研究提出了SiO2纳米粒子低浓度VES压裂液(NAVES).由1%EDAA和0.01%SiO2组成的NAVES体系在70℃下剪切2 h黏度在33 mPa·s以上;而1...  相似文献   

9.
化学破胶剂SD02用于压裂后地层处理   总被引:3,自引:0,他引:3  
考察了低碳羧酸、过氧化氢、有机氢过氧化物、过酸盐及一种有机过氧化物与一种低碳羧酸的复配物(代号SD02)对4种压裂液冻胶(含0.5%聚合物的HPG/有机硼、香豆胶/有机硼、羟丙基田菁胶/有机硼及改性PAM/硫酸铝钾压裂液)的破胶性能。等体积压裂液与5%破胶剂溶液混合,分别在25℃和85℃反应0.5h后,混合液粘度比压裂液粘度分别降低78.9%~97.2%和69.6%~98.2%,其中SD02的降粘率最高,分别为94.8%~97.2%和96.5%~98.2%,对于HPG/有机硼压裂液分别为94.8%和96.5%。取以上4种压裂液及黄胞胶/有机硼压裂液制备残渣,将残渣分散于水中,与等量SD02溶液混合,在25℃反应0.5h,残渣溶解率在79.3%~91.4%,对于HPG/有机硼压裂液残渣,溶解率为91.4%。85℃下5%SD02溶液对石英砂及不同产地陶粒的4h溶蚀率≤0.3%。用5%SD02溶液作二次破胶剂,用于处理压裂后破胶效果不好的14口井,与3口未处理井相比,返排率由8.2%~11.4%上升到19.8%~33.1%,破胶液粘度由157~172mPa·s下降到1.5~5.1mPa·s,增产原油效果良好。表4。  相似文献   

10.
O/W型交联乳化压裂液配方研究   总被引:1,自引:1,他引:1  
研制了一种交联O/W型乳化体系用作水力压裂的压裂液.它是通过采用复合乳化剂,应用D相乳化法,将油相以体积比为50∶50的比例分散于交联的HPG溶液相中得到的一种多相分散体系.该体系在80 ℃、170 s-1下剪切,粘度可达到446.9 mPa·s,剪切2 h后粘度仍大于100 mPa·s;破胶后粘度降为2 mPa·s,压裂残渣含量仅为166mg/L,能大大减少压裂液在裂缝中的滞留,有效降低对地层渗透率的伤害.该体系较其它压裂液体系具有很好的滤失控制、优良的破胶返排能力,对支撑剂有很好的悬浮稳定作用,适宜中低渗透率地层的压裂施工.通过对影响体系性能的各因素及交互作用进行研究,确立了地层温度不大于100 ℃的交联乳化压裂液配方.  相似文献   

11.
蒋官澄  张强  张志行 《油田化学》2014,31(3):317-321
实验研究了阳离子型黏弹性表面活性剂十六烷基三甲基溴化铵(CTAB)溶液的流变性、抗温性、降滤失性及配套破胶剂的破胶性能。实验结果表明:将2%CTAB与3%助剂水杨酸钠NaSal混合的基液在剪切速率170s-1、温度25℃、pH=7的情况下混合均匀后能迅速增黏至160 mPa·s;加入少量复合降滤失剂LA(水解聚丙烯腈铵(NH4-HPAN)和磺化酚醛树脂(SMP-Ⅱ)混合而成的复合体系)可显著降低其常温常压滤失量;高效破胶剂Br的破胶性能良好,破胶液的黏度降至1~3 mPa·s。同时室内研究了以阳离子型黏弹性表活性剂CTAB为主剂的钻井液体系——表面活性剂胶束钻井液DIF-a:1.5%CTAB+2.0%NaSal+1.2%复合降黏剂LA+0.5%黄胞胶XC,结果表明:在钻探碳酸盐岩地层时钻井液体系DIF-a产生的流动摩阻小、降滤失性能较好,且钻完井后利于返排,储层渗透率保留率可以达到91.41%,大大降低外部流体对储层造成的损害。  相似文献   

12.
粘弹性表面活性剂压裂液的化学和流变学原理   总被引:6,自引:0,他引:6  
综述。前言讲述了压裂液发展史及粘弹性表面活性剂(VES)压裂液的产生。微观结构原理一节讲述了表面活性剂肢束的各种形态、可形成蠕虫状肢束的各类表面活性刺,尤其是美国Schlumberger公司的ClearFrac压裂液中使用的由芥酸合成的季铵盐类。稠化原理一节给出了蠕虫状肢束数量C(L)和平均长度艺表达式,讨论了表面活性剂体积分数、温度、肢束分离能对L的影响,图示了VES压裂液稠化过程。破肢原理一节介绍了烃等油类和亲油物质在蠕虫状胶束内增溶,引起VES压裂液破肢的过程。图3参15。  相似文献   

13.
耐高温FRK-VES清洁压裂液性能评价   总被引:4,自引:0,他引:4  
针对国内外清洁压裂液耐温性能较差的问题,开发出一种新型的两性离子表面活性剂压裂液体系。该清洁压裂液体系优化配方为4.0%FRK-VES+0.30%稀盐酸+4.0%KCl溶液+1.0%苯甲酸钠。室内实验对FRK-VES压裂液体系性能进行了评价:耐温耐剪切性良好,120℃的表观黏度为83 mPa.s(170 1/s),30℃连续剪切60 min的黏度为3167 mPa.s;携砂性能良好,摩阻较小,在常温下与原油和地层水混合可迅速破胶,破胶液黏度小于5 mPa.s,并且无残渣,破胶液界面张力为0.75 mN/m,表面张力为24.8 mN/m;该体系滤失系数为1.93×10-4m/min1/2,对渗透率为1μm2和0.2μm2储层的渗透率伤害率分别为19.56%、25.36%,适合不超过120℃的高温低渗砂岩的储层改造。该清洁压裂液在胜利油田、华北分公司现场施工,效果较好。图3表5参11  相似文献   

14.
孤东二元驱体系中表面活性剂复配增效作用研究及应用   总被引:2,自引:0,他引:2  
报道了孤东PS二元复合驱先导试验中所用胜利石油磺酸盐SLPS与非离子表面活性剂间的复配增效作用研究结果。等摩尔比的磺酸盐AS与非离子剂LS54溶液的动态表面张力能迅速达到平衡且平衡值σe低。AS/LS45混合体系的临界胶束浓度随LS45加入比例的增大不断降低,σe值则迅速降低并维持低值。当油相为正辛烷、甲苯、甲苯 正辛烷(1∶2)时,在磺酸盐SDBS中加入非离子剂LS45、TX、Tween、AES后,油水界面张力均大幅降低;在正辛烷中加入甲苯,可以降低与水相间的界面张力。用介观尺寸耗散粒子动力学(DPD)方法模拟,求得SDBS TX在油水界面的分布密度较SDBS大大增加,导致界面张力大幅下降。按以上原理复配的3 g/L SLPS 1g/L非离子剂 1.7 g/L聚合物超低界面张力体系,室内物模实验中提高采收率18.1%。在孤乐七区西南Ng54-61层10注16采试验区,从2004年6月起注入SP二元体系(4.5 g/L SLPS 1.5 g/L非离子剂 1.7 g/L聚合物),降水增油效果显著,截止2008年3月,试验区提高采收率5.7%,中心井区提高采收率12.7%且采出程度达到54%。图7表2参12。  相似文献   

15.
变粘酸用转向稠化剂VCA的研制   总被引:4,自引:0,他引:4  
赵梦云  赵忠扬  赵青 《油田化学》2005,22(2):133-135,129
由长链脂肪酸衍生物合成了分子量~480、易溶于水和酸的阳离子表面活性剂VCA,实验考察了VCA作为自变粘盐酸液稠化剂的性能。VCA为50%水溶液,呈棕红色,粘度~10 mPa.s,在22%盐酸中当温度<40℃时可稳定存在7天以上。在25℃模拟酸岩反应中,含VCA的22%盐酸液逐步被Ca(OH)2中和,当酸浓度降至17%以下时,在Ca2 作用下VCA球形胶束变为蠕虫状胶束并形成网状结构,酸液变为粘弹性凝胶,20和40 g/L VCA酸液粘度最高达~450和接近900 mPa.s(乏酸浓度3%时),酸岩反应完成、pH值升至4以上时凝胶完全破解。VCA酸液耐温性良好,浓度由22%被中和至16%的含40 g/L VCA的盐酸液,在90℃、170 s-1粘温性测定中,初始粘度~82 mPa.s(~25℃),最高粘度~95 mPa.s(90℃),1小时后粘度≥19 mPa.s(90℃)。含20 g/L VCA的22%盐酸液与大理石在90℃、常压、静态反应100 min,大理石剩余质量>50%,表明该酸液缓速性良好。含40 g/L VCA的22%盐酸液在相同条件下与大理石完全反应后,乏酸液粘度<5.0 mPa.s,无沉淀,与水完全混溶。图3参5。  相似文献   

16.
以异辛醇为原料合成了伸展型表面活性剂辛基聚氧丙烯(9)聚氧乙烯(6)硫酸酯钠(P9E6S),并通过对P9E6S进行亚硫酸盐磺化得到新型伸展型表面活性剂辛基聚氧丙烯(9)聚氧乙烯(6)磺酸钠(P9E6SO)。用FTIR方法表征了P9E6S和P9E6SO的结构;研究了P9E6S合成P9E6SO的适宜条件;考察了P9E6S和P9E6SO的表面活性、耐高温水解性和界面活性,并与阴离子表面活性剂十二烷基硫酸钠(SDS)进行了对比。实验结果表明,P9E6SO适宜的合成条件为:w(P9E6S)=38.0%、n(Na2SO3)∶n(P9E6S)=4∶l、反应温度170℃、反应时间6 h,在此条件下P9E6S的磺化率为51.4%,水解率为12.4%。P9E6S和P9E6SO均具有良好的低温溶解性,乳化力为SDS的5倍以上;P9E6SO具有极好的耐高温水解性,可适用的油藏矿化度范围较宽。  相似文献   

17.
研究了阳离子双子表面活性剂对固体表面润湿性的影响,并从机理上进行了探讨,结果表明,与普通表面活性剂相比,阳离子双子表面活性剂在很低浓度时就能将油湿的固体表面转化为强水湿表面,并且不会改变水湿表面的润湿性;另外,对联接基长度相同但是疏水烷基链长度不同的双子表面活性剂对固体表面的润湿性影响进行了考察,结果发现疏水烷基链短的双子表面活性剂较疏水烷基链长度长的双子表面活性剂更能显著影响固体表面的润湿性。  相似文献   

18.
N,N′-双月桂酰基乙二胺二丙酸钠的制备与性能   总被引:6,自引:0,他引:6  
以丙烯酸甲酯、乙二胺及月桂酸为原料制备了Gemini型阴离子表面活性剂N,N′ 双月桂酰基乙二胺二 丙酸钠,并对其相关性能进行表征。结果表明,该表面活性剂在25℃时γcmc为27.1mN/m,cmc为9.6× 10-4mol/dm3,胶束聚集数(Nm)为41.6,均小于相应的普通皂型表面活性剂;并测定了乳化、润湿、泡沫及耐 硬水洗涤等应用性能。  相似文献   

19.
以环己烷为溶剂,合成了邻苯二甲酸单十四醇酯,并对反应时间、催化剂及用量、原料配比诸因素进行了考察。最后制得了单酯钠盐。合成单酯的最佳条件是:醇酐摩尔比为1:2,回流温度约80℃,反应时间5h,催化剂用量约为醇量的1.2%。该合成产品提纯方法合理,颜色洁白纯正。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号