共查询到6条相似文献,搜索用时 0 毫秒
1.
A new hidden Markov model (HMM) based feature generation scheme is proposed for face recognition (FR) in this paper. In this scheme, HMM method is used to model classes of face images. A set of Fisher scores is calculated through partial derivative analysis of the parameters estimated in each HMM. These Fisher scores are further combined with some traditional features such as log-likelihood and appearance based features to form feature vectors that exploit the strengths of both local and holistic features of human face. Linear discriminant analysis (LDA) is then applied to analyze these feature vectors for FR. Performance improvements are observed over stand-alone HMM method and Fisher face method which uses appearance based feature vectors. A further study reveals that, by reducing the number of models involved in the training and testing stages of LDA, the proposed feature generation scheme can maintain very high discriminative power at much lower computational complexity comparing to the traditional HMM based FR system. Experimental results on a public available face database are provided to demonstrate the viability of this scheme. 相似文献
2.
3.
This paper presents a segment-based probabilistic approach to robustly recognize continuous sign language sentences. The recognition strategy is based on a two-layer conditional random field (CRF) model, where the lower layer processes the component channels and provides outputs to the upper layer for sign recognition. The continuously signed sentences are first segmented, and the sub-segments are labeled SIGN or ME (movement epenthesis) by a Bayesian network (BN) which fuses the outputs of independent CRF and support vector machine (SVM) classifiers. The sub-segments labeled as ME are discarded and the remaining SIGN sub-segments are merged and recognized by the two-layer CRF classifier; for this we have proposed a new algorithm based on the semi-Markov CRF decoding scheme. With eight signers, we obtained a recall rate of 95.7% and a precision of 96.6% for unseen samples from seen signers, and a recall rate of 86.6% and a precision of 89.9% for unseen signers. 相似文献
4.
A Chinese sign language recognition system based on SOFM/SRN/HMM 总被引:3,自引:0,他引:3
In sign language recognition (SLR), the major challenges now are developing methods that solve signer-independent continuous sign problems. In this paper, SOFM/HMM is first presented for modeling signer-independent isolated signs. The proposed method uses the self-organizing feature maps (SOFM) as different signers' feature extractor for continuous hidden Markov models (HMM) so as to transform input signs into significant and low-dimensional representations that can be well modeled by the emission probabilities of HMM. Based on these isolated sign models, a SOFM/SRN/HMM model is then proposed for signer-independent continuous SLR. This model applies the improved simple recurrent network (SRN) to segment continuous sign language in terms of transformed SOFM representations, and the outputs of SRN are taken as the HMM states in which the lattice Viterbi algorithm is employed to search the best matched word sequence. Experimental results demonstrate that the proposed system has better performance compared with conventional HMM system and obtains a word recognition rate of 82.9% over a 5113-sign vocabulary and an accuracy of 86.3% for signer-independent continuous SLR. 相似文献
5.
Oya Aran Author Vitae Thomas Burger Author Vitae Author Vitae Lale Akarun Author Vitae 《Pattern recognition》2009,42(5):812-822
Most of the research on sign language recognition concentrates on recognizing only manual signs (hand gestures and shapes), discarding a very important component: the non-manual signals (facial expressions and head/shoulder motion). We address the recognition of signs with both manual and non-manual components using a sequential belief-based fusion technique. The manual components, which carry information of primary importance, are utilized in the first stage. The second stage, which makes use of non-manual components, is only employed if there is hesitation in the decision of the first stage. We employ belief formalism both to model the hesitation and to determine the sign clusters within which the discrimination takes place in the second stage. We have implemented this technique in a sign tutor application. Our results on the eNTERFACE’06 ASL database show an improvement over the baseline system which uses parallel or feature fusion of manual and non-manual features: we achieve an accuracy of 81.6%. 相似文献
6.
《Pattern recognition letters》1992,13(12):879-891
In this paper the comparison of performances of different feature representations of the speech signal and comparison of classification procedures for Slovene phoneme recognition are presented. Recognition results are obtained on the database of continuous Slovene speech consisting of short Slovene sentences spoken by female speakers. MEL-cepstrum and LPC-cepstrum features combined with the normalized frame loudness were found to be the most suitable feature representations for Slovene speech. It was found that determination of MEL-cepstrum using linear spacing of bandpass filters gave significantly better results for speaker dependent recognition. Comparison of classification procedures favours the Bayes classification assuming normal distribution of the feature vectors (BNF) to the classification based on quadratic discriminant functions (DF) for minimum mean-square error and subspace method (SM), which does not confirm the results obtained in some previous studies for German and Finn speech. Additionally, classification procedures based on hidden Markov models (HMM) and the Kohonen Self-Organizing Map (KSOM) were tested on a smaller amount of speech data (1 speaker only). Classification results are comparable with classification using BNF. 相似文献