共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Don Willems Ralph Niels Marcel van Gerven Louis Vuurpijl Author vitae 《Pattern recognition》2009,42(12):3303-3312
Many handwritten gestures, characters, and symbols comprise multiple pendown strokes separated by penup strokes. In this paper, a large number of features known from the literature are explored for the recognition of such multi-stroke gestures. Features are computed from a global gesture shape. From its constituent strokes, the mean and standard deviation of each feature are computed. We show that using these new stroke-based features, significant improvements in classification accuracy can be obtained between 10% and 50% compared to global feature representations. These results are consistent over four different databases, containing iconic pen gestures, handwritten symbols, and upper-case characters. Compared to two other multi-stroke recognition techniques, improvements between 25% and 39% are achieved, averaged over all four databases. 相似文献
3.
4.
A driver fatigue recognition model based on information fusion and dynamic Bayesian network 总被引:2,自引:0,他引:2
We propose a driver fatigue recognition model based on the dynamic Bayesian network, information fusion and multiple contextual and physiological features. We include features such as the contact physiological features (e.g., ECG and EEG), and apply the first-order Hidden Markov Model to compute the dynamics of the Bayesian network at different time slices. The experimental validation shows the effectiveness of the proposed system; also it indicates that the contact physiological features (especially ECG and EEG) are significant factors for inferring the fatigue state of a driver. 相似文献
5.
构造了两个单流单音素的动态贝叶斯网络(DBN)模型,以实现基于音频和视频特征的连续语音识别,并在描述词和对应音素具体关系的基础上,实现对音素的时间切分。实验结果表明,在基于音频特征的识别率方面:在低信噪比(0~15dB)时,DBN模型的识别率比HMM模型平均高12.79%;而纯净语音下,基于DBN模型的音素时间切分结果和三音素HMM模型的切分结果很接近。对基于视频特征的语音识别,DBN模型的识别率比HMM识别率高2.47%。实验最后还分析了音视频数据音素时间切分的异步关系,为基于多流DBN模型的音视频连续语音识别和确定音频和视频的异步关系奠定了基础。 相似文献
6.
Changhong Chen Author Vitae Jimin Liang Author Vitae Author Vitae 《Pattern recognition》2011,44(4):988-995
In this paper, we proposed an improved two-level dynamic Bayesian network layered time series model (LTSM), which aims to solve the limitations hindering the application of available dynamic Bayesian networks, the hidden Markov model (HMM) and the dynamic texture (DT) model to gait recognition. In the first level, a gait silhouette or feature cycle is divided into several temporally adjacent clusters. Each cluster is modeled by a DT or logistic DT (LDT). In the second level, HMM is built to describe the relationship among the DTs/LDTs. Besides LTSM, LDT is also an improved dynamic Bayesian network presented in this paper to describe the binary image sequence, which introduces the logistic principle component analysis (PCA) to learning its parameters. We demonstrated the validity of LTSM with experiments on both the CMU Mobo gait database and CASIA gait database (dataset B), and that of LDT on the CMU Mobo gait database. Experimental results showed the superiority of the improved dynamic Bayesian networks. 相似文献
7.
为了使人机交互变得更加自然,提出利用Kinect体感器获取手势深度图像;利用变形雅可比-傅里叶矩对手势图像进行特征提取;利用最小欧氏距离分类器进行建模、分类,实现手势识别.用Kinect体感器获取手部深度数据流,深度数据结合阈值分割法,可以有效地实现手势的分割.变形雅可比-傅里叶矩是一种不变矩,不变矩具有灰度、平移、旋转和尺度不变性,适合用于多畸变不变图像的特征提取.实验对5种手势进行了测试,平均识别率为95.2%,实验结果表明:该方法具有较高的识别率. 相似文献
8.
9.
静态手势识别是以手势驱动的人机交互系统的核心技术。针对静态手势识别问题,提出了一种基于深度图像进行静态手势识别的方法。为了消除静态手势识别过程中的平移、旋转和缩放不变性,提取手势轮廓的Hu不变矩,并以Hu不变矩作为特征构建静态手势深度感知神经网络模型,以此实现对静态手势进行分类识别。在VisualStudio的开发环境下实现了对该方法的验证,取得了良好的效果,并与传统的模板匹配法与基于卷积神经网络的深度学习方法作比较,静态手势识别准确率总体可达95%,识别效率高,能满足实时性要求。 相似文献
10.
采用隐马尔可夫模型(Hidden Markov Model)算法的缺点,采用纠错算法对其修正,提高了识别率。了对机器人控制的目的,优化了人机交互的接口。训练并识别手势样本,针对HMM的经典训练算法Baum-Welch将识别结果应用于“基于Internet远程机器人控制”项目,达到了对机器人控制的目的,优化了人机交互的接口。 相似文献
11.
Articulatory feature recognition using dynamic Bayesian networks 总被引:2,自引:0,他引:2
We describe a dynamic Bayesian network for articulatory feature recognition. The model is intended to be a component of a speech recognizer that avoids the problems of conventional “beads-on-a-string” phoneme-based models. We demonstrate that the model gives superior recognition of articulatory features from the speech signal compared with a state-of-the-art neural network system. We also introduce a training algorithm that offers two major advances: it does not require time-aligned feature labels and it allows the model to learn a set of asynchronous feature changes in a data-driven manner. 相似文献
12.
针对手势交互中手势信号的相似性及不稳定性,设计并实现了一种基于随机投影(RP)的加速度手势识别方法.识别系统包含训练阶段和测试阶段:训练阶段运用动态时间规整(DTW)和近邻传播(AP)算法对训练集中的每一个手势迹创建样本中心;测试阶段先通过计算未知手势迹与样本中心的距离找出候选姿势迹,然后用RP算法将候选手势迹和未知手势迹投影到低维子空间,把识别问题转换成l1-minimization问题来对未知的手势迹进行识别.在采集的2400个数据样本上进行了基于特定人和非特定人的实验,结果表明所提算法分别取得了98.41%和96.67%的识别率,该方法能够有效识别加速度手势动作. 相似文献
13.
The role of gesture recognition is significant in areas like human‐computer interaction, sign language, virtual reality, machine vision, etc. Among various gestures of the human body, hand gestures play a major role to communicate nonverbally with the computer. As the hand gesture is a continuous pattern with respect to time, the hidden Markov model (HMM) is found to be the most suitable pattern recognition tool, which can be modeled using the hand gesture parameters. The HMM considers the speeded up robust feature features of hand gesture and uses them to train and test the system. Conventionally, the Viterbi algorithm has been used for training process in HMM by discovering the shortest decoded path in the state diagram. The recursiveness of the Viterbi algorithm leads to computational complexity during the execution process. In order to reduce the complexity, the state sequence analysis approach is proposed for training the hand gesture model, which provides a better recognition rate and accuracy than that of the Viterbi algorithm. The performance of the proposed approach is explored in the context of pattern recognition with the Cambridge hand gesture data set. 相似文献
14.
目的 手势识别是人机交互领域的热点问题。针对传统手势识别方法在复杂背景下识别率低,以及现有基于深度学习的手势识别方法检测时间长等问题,提出了一种基于改进TinyYOLOv3算法的手势识别方法。方法 对TinyYOLOv3主干网络重新进行设计,增加网络层数,从而确保网络提取到更丰富的语义信息。使用深度可分离卷积代替传统卷积,并对不同网络层的特征进行融合,在保证识别准确率的同时,减小网络模型的大小。采用CIoU(complete intersection over union)损失对原始的边界框坐标预测损失进行改进,将通道注意力模块融合到特征提取网络中,提高了定位精度和识别准确率。使用数据增强方法避免训练过拟合,并通过超参数优化和先验框聚类等方法加快网络收敛速度。结果 改进后的网络识别准确率达到99.1%,网络模型大小为27.6 MB,相比原网络(TinyYOLOv3)准确率提升了8.5%,网络模型降低了5.6 MB,相比于YOLO(you only look once)v3和SSD(single shot multibox detector)300算法,准确率略有降低,但网络模型分别减小到原来的1/8和1/3左右,相比于YOLO-lite和MobileNet-SSD等轻量级网络,准确率分别提升61.12%和3.11%。同时在自制的复杂背景下的手势数据集对改进后的网络模型进行验证,准确率达到97.3%,充分证明了本文算法的可行性。结论 本文提出的改进Tiny-YOLOv3手势识别方法,对于复杂背景下的手势具有较高的识别准确率,同时在检测速度和模型大小方面都优于其他算法,可以较好地满足在嵌入式设备中的使用要求。 相似文献
15.
在机器人场景识别问题中,将连续场景的相关性通过基于隐马尔可夫模型的上下文模型进行描述.采用不同于传统的使用生成模型方法学习上下文场景识别模型的方式,首先引入稀疏贝叶斯学习机对上下文模型中图像特征的后验概率进行建模,然后通过贝叶斯原理将稀疏贝叶斯模型与隐马尔可夫模型结合,提出一种能够实现上下文场景识别模型的判别学习方法.在真实场景数据库上的实验结果表明,由该方法得到的上下文场景识别系统具有很好的场景识别能力和泛化特性. 相似文献
16.
针对目前室内移动机器人手势指令识别系统存在的问题,对图像传感器与机器人相分离的图像采集方案进行了研究,并利用动态手势指令对机器人进行控制。动态手势指令识别方法是对手的不同运动轨迹进行识别,通过皮肤颜色模型和手势中心点方向向量法追踪得到手势运动轨迹,提取手势运动轨迹的特征向量,通过基于动态时间规整(DTW)实现对轨迹的识别。实验结果表明,该系统可以实现对机器人前进、后退、左转、右转的实时控制。 相似文献
17.
Hand gesture recognition has been intensively applied in various human-computer interaction (HCI) systems. Different hand gesture recognition methods were developed based on particular features, e.g., gesture trajectories and acceleration signals. However, it has been noticed that the limitation of either features can lead to flaws of a HCI system. In this paper, to overcome the limitations but combine the merits of both features, we propose a novel feature fusion approach for 3D hand gesture recognition. In our approach, gesture trajectories are represented by the intersection numbers with randomly generated line segments on their 2D principal planes, acceleration signals are represented by the coefficients of discrete cosine transformation (DCT). Then, a hidden space shared by the two features is learned by using penalized maximum likelihood estimation (MLE). An iterative algorithm, composed of two steps per iteration, is derived to for this penalized MLE, in which the first step is to solve a standard least square problem and the second step is to solve a Sylvester equation. We tested our hand gesture recognition approach on different hand gesture sets. Results confirm the effectiveness of the feature fusion method. 相似文献
18.
基于手势识别的机器人人机交互技术研究 总被引:8,自引:1,他引:7
研究了基于视觉的动态手势识别技术,采用基于肤色的高斯模型与改进的光流场跟踪算法结合的方法,实现了复杂背景下实时的手势跟踪,具有快速和准确的特点,且具有较好的鲁棒性.对于动态手势识别器,采用了隐马尔可夫模型(HMM)作为训练识别算法.考虑到动态手势特征本身的一些特点,对HMM 参数优化算法重估式加以修正,调整了算法比例因子,从而推导了最佳状态链的确定算法、HMM 参数优化算法.最后将研究开发的动态手势识别算法成功地应用到了基于网络的远程机器人控制系统中. 相似文献
19.
针对复杂背景下的手势识别容易受到环境干扰造成的识别困难问题,通过分析手势的表观特征,提出并实现了一种可用于自然人机交互的手势识别算法。该算法基于Kinect深度图像实现手势区域分割,然后提取手势手指弧度、指间弧度、手指数目等具有旋转缩放不变性的表观特征,运用最小距离法实现快速分类。并将该算法成功运用于实验室三指灵巧手平台,达到了理想的控制效果。实验表明该算法具有良好的鲁棒性,针对九种常用手势,平均识别率达到94.3%。 相似文献
20.
许凯王敏 《计算机工程与科学》2014,36(5):941-946
提出了一种新的手势识别方法,该方法从深度图像中提取手形轮廓,通过计算手形轮廓与轮廓形心点的距离,使用离散傅里叶变换获得手势的表观特征,引入径向基核的支持向量机识别手势。建立了一个常见的10种手势的数据集,测试获得了97.9%的识别率。 相似文献