共查询到20条相似文献,搜索用时 15 毫秒
1.
Shehzad Khalid Author Vitae 《Pattern recognition》2010,43(1):173-186
Techniques for understanding video object motion activity are becoming increasingly important with the widespread adoption of CCTV surveillance systems. Motion trajectories provide rich spatiotemporal information about an object's activity. This paper presents a novel technique for clustering and classification of motion. In the proposed motion learning system, trajectories are treated as time series and modelled using modified DFT (discrete fourier transform)-based coefficient feature space representation. A framework (iterative HSACT-LVQ (hierarchical semi-agglomerative clustering-learning vector quantization)) is proposed for learning of patterns in the presence of significant number of anomalies in training data. A novel modelling technique, referred to as m-Mediods, is also proposed that models the class containing n members with m Mediods. Once the m-Mediods-based model for all the classes have been learnt, the classification of new trajectories and anomaly detection can be performed by checking the closeness of said trajectory to the models of known classes. A mechanism based on agglomerative approach is proposed for anomaly detection. Our proposed techniques are validated using variety of simulated and complex real life trajectory data sets. 相似文献
2.
This paper proposes a novel technique for clustering and classification of object trajectory-based video motion clips using spatiotemporal function approximations. Assuming the clusters of trajectory points are distributed normally in the coefficient feature space, we propose a Mahalanobis classifier for the detection of anomalous trajectories. Motion trajectories are considered as time series and modelled using orthogonal basis function representations. We have compared three different function approximations – least squares polynomials, Chebyshev polynomials and Fourier series obtained by Discrete Fourier Transform (DFT). Trajectory clustering is then carried out in the chosen coefficient feature space to discover patterns of similar object motions. The coefficients of the basis functions are used as input feature vectors to a Self- Organising Map which can learn similarities between object trajectories in an unsupervised manner. Encoding trajectories in this way leads to efficiency gains over existing approaches that use discrete point-based flow vectors to represent the whole trajectory. Our proposed techniques are validated on three different datasets – Australian sign language, hand-labelled object trajectories from video surveillance footage and real-time tracking data obtained in the laboratory. Applications to event detection and motion data mining for multimedia video surveillance systems are envisaged. 相似文献
3.
《Journal of Visual Languages and Computing》2014,25(1):43-53
ContextAs trajectory analysis is widely used in the fields of video surveillance, crowd monitoring, behavioral prediction, and anomaly detection, finding motion patterns is a fundamental task for pedestrian trajectory analysis.ObjectiveIn this paper, we focus on learning dominant motion patterns in unstructured scene.MethodsAs the invisible implicit indicator to scene structure, latent structural information is first defined and learned by clustering source/sink points using CURE algorithm. Considering the basic assumption that most pedestrians would find the similar paths to pass through an unstructured scene if their entry and exit areas are fixed, trajectories are then grouped based on the latent structural information. Finally, the motion patterns are learned for each group, which are characterized by a series of statistical temporal and spatial properties including length, duration and envelopes in polar coordinate space.ResultsExperimental results demonstrate the feasibility and effectiveness of our method, and the learned motion patterns can efficiently describe the statistical spatiotemporal models of the typical pedestrian behaviors in a real scene. Based on the learned motion patterns, abnormal or suspicious trajectories are detected.ConclusionThe performance of our approach shows high spatial accuracy and low computational cost. 相似文献
4.
《Journal of Visual Languages and Computing》2014,25(4):376-393
ObjectiveThis work proposes a novel approach to model the spatiotemporal distribution of crowd motions and detect anomalous events.MethodsWe first learn the regions of interest (ROIs) which inform the behavioral patterns by trajectory analysis with Hierarchical Dirichlet Processes (HDP), so that the main trends of crowd motions can be modeled. Based on the ROIs, we then build a series of histograms both on global and local levels as the templates for the observed movement distribution, which statistically describes time-correlated crowd events. Once the template has been built hierarchically, we import real data containing the discrete trajectory observations from video surveillance and detect abnormal events for individuals and for crowds.ResultsExperimental results show the effectiveness of our approach, which is able to analyze and extract the crowd motion information from observed trajectory dataset, and achieve the anomaly detection at the hierarchical levels.ConclusionThe proposed hierarchical approach can learn the moving trends of crowd both in global and local area and describe the crowd behaviors in statistical way, which build a template for pedestrian movement distribution that allows for the detection of time-correlated abnormal crowd events. 相似文献
5.
Heshan Kumarage Ibrahim Khalil Zahir Tari Albert Zomaya 《Journal of Parallel and Distributed Computing》2013
Modern infrastructure increasingly depends on large computerized systems for their reliable operation. Supervisory Control and Data Acquisition (SCADA) systems are being deployed to monitor and control large scale distributed infrastructures (e.g. power plants, water distribution systems). A recent trend is to incorporate Wireless Sensor Networks (WSNs) to sense and gather data. However, due to the broadcast nature of the network and inherent limitations in the sensor nodes themselves, they are vulnerable to different types of security attacks. Given the critical aspects of the underlying infrastructure it is an extremely important research challenge to provide effective methods to detect malicious activities on these networks. This paper proposes a robust and scalable mechanism that aims to detect malicious anomalies accurately and efficiently using distributed in-network processing in a hierarchical framework. Unsupervised data partitioning is performed distributively adapting fuzzy c-means clustering in an incremental model. Non-parametric and non-probabilistic anomaly detection is performed through fuzzy membership evaluations and thresholds on observed inter-cluster distances. Robust thresholds are determined adaptively using second order statistical knowledge at each evaluation stage. Extensive experiments were performed and the results demonstrate that the proposed framework achieves high detection accuracy compared to existing data clustering approaches with more than 96% less communication overheads opposed to a centralized approach. 相似文献
6.
Hesam Sagha Hamidreza BayatiJosé del R. Millán Ricardo Chavarriaga 《Pattern recognition letters》2013
Detection of anomalies is a broad field of study, which is applied in different areas such as data monitoring, navigation, and pattern recognition. In this paper we propose two measures to detect anomalous behaviors in an ensemble of classifiers by monitoring their decisions; one based on Mahalanobis distance and another based on information theory. These approaches are useful when an ensemble of classifiers is used and a decision is made by ordinary classifier fusion methods, while each classifier is devoted to monitor part of the environment. Upon detection of anomalous classifiers we propose a strategy that attempts to minimize adverse effects of faulty classifiers by excluding them from the ensemble. We applied this method to an artificial dataset and sensor-based human activity datasets, with different sensor configurations and two types of noise (additive and rotational on inertial sensors). We compared our method with two other well-known approaches, generalized likelihood ratio (GLR) and One-Class Support Vector Machine (OCSVM), which detect anomalies at data/feature level. 相似文献
7.
This paper discusses four algorithms for detecting anomalies in logs of process aware systems. One of the algorithms only marks as potential anomalies traces that are infrequent in the log. The other three algorithms: threshold, iterative and sampling are based on mining a process model from the log, or a subset of it. The algorithms were evaluated on a set of 1500 artificial logs, with different profiles on the number of anomalous traces and the number of times each anomalous traces was present in the log. The sampling algorithm proved to be the most effective solution. We also applied the algorithm to a real log, and compared the resulting detected anomalous traces with the ones detected by a different procedure that relies on manual choices. 相似文献
8.
A program-based anomaly intrusion detection scheme using multiple detection engines and fuzzy inference 总被引:1,自引:0,他引:1
Xuan Dau Hoang Jiankun Hu Peter Bertok 《Journal of Network and Computer Applications》2009,32(6):1219-1228
In this paper, a hybrid anomaly intrusion detection scheme using program system calls is proposed. In this scheme, a hidden Markov model (HMM) detection engine and a normal database detection engine have been combined to utilise their respective advantages. A fuzzy-based inference mechanism is used to infer a soft boundary between anomalous and normal behaviour, which is otherwise very difficult to determine when they overlap or are very close. To address the challenging issue of high cost in HMM training, an incremental HMM training with optimal initialization of HMM parameters is suggested. Experimental results show that the proposed fuzzy-based detection scheme can reduce false positive alarms by 48%, compared to the single normal database detection scheme. Our HMM incremental training with the optimal initialization produced a significant improvement in terms of training time and storage as well. The HMM training time was reduced by four times and the memory requirement was also reduced significantly. 相似文献
9.
10.
Local anomaly detection refers to detecting small anomalies or outliers that exist in some subsegments of events or behaviors. Such local anomalies are easily overlooked by most of the existing approaches since they are designed for detecting global or large anomalies. In this paper, an accurate and flexible three-phase framework TRASMIL is proposed for local anomaly detection based on TRAjectory Segmentation and Multi-Instance Learning. Firstly, every motion trajectory is segmented into independent sub-trajectories, and a metric with Diversity and Granularity is proposed to measure the quality of segmentation. Secondly, the segmented sub-trajectories are modeled by a sequence learning model. Finally, multi-instance learning is applied to detect abnormal trajectories and sub-trajectories which are viewed as bags and instances, respectively. We validate the TRASMIL framework in terms of 16 different algorithms built on the three-phase framework. Substantial experiments show that algorithms based on the TRASMIL framework outperform existing methods in effectively detecting the trajectories with local anomalies in terms of the whole trajectory. In particular, the MDL-C algorithm (the combination of HDP-HMM with MDL segmentation and Citation kNN) achieves the highest accuracy and recall rates. We further show that TRASMIL is generic enough to adopt other algorithms for identifying local anomalies. 相似文献
11.
Motion trajectories provide rich spatio-temporal information about an object's activity. The trajectory information can be obtained using a tracking algorithm on data streams available from a range of devices including motion sensors, video cameras, haptic devices, etc. Developing view-invariant activity recognition algorithms based on this high dimensional cue is an extremely challenging task. This paper presents efficient activity recognition algorithms using novel view-invariant representation of trajectories. Towards this end, we derive two Affine-invariant representations for motion trajectories based on curvature scale space (CSS) and centroid distance function (CDF). The properties of these schemes facilitate the design of efficient recognition algorithms based on hidden Markov models (HMMs). In the CSS-based representation, maxima of curvature zero crossings at increasing levels of smoothness are extracted to mark the location and extent of concavities in the curvature. The sequences of these CSS maxima are then modeled by continuous density (HMMs). For the case of CDF, we first segment the trajectory into subtrajectories using CDF-based representation. These subtrajectories are then represented by their Principal Component Analysis (PCA) coefficients. The sequences of these PCA coefficients from subtrajectories are then modeled by continuous density hidden Markov models (HMMs). Different classes of object motions are modeled by one Continuous HMM per class where state PDFs are represented by GMMs. Experiments using a database of around 1750 complex trajectories (obtained from UCI-KDD data archives) subdivided into five different classes are reported. 相似文献
12.
目前临床病例异常检测的研究主要采用病症关联、费用控制和临床序列模式挖掘等方法,对无症状信息、无完整临床行为时间等临床数据仍具有一定的局限性.根据这一类临床数据特点,提出了基于模式识别的CC-FR模型,该模型采用频繁模式挖掘的方法确定单病种隶属函数,通过隶属函数中的频繁模式与待检测临床病例相匹配得到检测结果.实验结果表明,该模型可以有效的检测临床病例异常性,在临床医疗中起到监督和警示的作用. 相似文献
13.
传统的入侵检测技术主要是从已知攻击数据中提取出每种具体攻击的特征规则模式,然后使用这些规则模式来进行匹配。然而基于规则的入侵检测的主要问题是现有的规则模式并不能有效应对持续变化的新型入侵攻击。针对这一问题,基于数据挖掘的入侵检测方法成为了入侵检测技术新的研究热点。本文提出了一种基于孤立点挖掘的自适应入侵检测框架,首先,基于相似系数寻找孤立点,然后对孤立点集合进行聚类,并使用改进的关联规则算法来从孤立点聚类结果中提取出各类入侵活动的潜在特征模式,然后生成可使用的匹配规则模式来添加到现有的规则模式中去,进而达到自适应的目的。本文使用KDD99的UCI数据集进行孤立点挖掘,然后使用IDS Snort的作为实验平台,使用IDS Informer模拟攻击工具进行测试,这两个实验结果表明了本文所提出算法的有效性。 相似文献
14.
Techniques for understanding video object motion activity are becoming increasingly important with the widespread adoption of CCTV surveillance systems. Motion trajectories provide rich spatiotemporal information about an object's activity. This paper presents a novel technique for clustering of object trajectory-based video motion clips using basis function approximations. Motion cues can be extracted using a tracking algorithm on video streams from video cameras. In the proposed system, trajectories are treated as time series and modelled using orthogonal basis function representation. Various function approximations have been compared including least squares polynomial, Chebyshev polynomials, piecewise aggregate approximation, discrete Fourier transform (DFT), and modified DFT (DFT-MOD). A novel framework, namely iterative hierarchical semi-agglomerative clustering using learning vector quantization (Iterative HSACT-LVQ), is proposed for learning of patterns in the presence of significant number of anomalies in training data. In this context, anomalies are defined as atypical behavior patterns that are not represented by sufficient samples in training data and are infrequently occurring or unusual. The proposed algorithm does not require any prior knowledge about the number of patterns hidden in unclassified dataset. Experiments using complex real-life trajectory datasets demonstrate the superiority of our proposed Iterative HSACT-LVQ-based motion learning technique compared to other recent approaches. 相似文献
15.
We present a two-step method to speed-up object detection systems in computer vision that use support vector machines as classifiers. In the first step we build a hierarchy of classifiers. On the bottom level, a simple and fast linear classifier analyzes the whole image and rejects large parts of the background. On the top level, a slower but more accurate classifier performs the final detection. We propose a new method for automatically building and training a hierarchy of classifiers. In the second step we apply feature reduction to the top level classifier by choosing relevant image features according to a measure derived from statistical learning theory. Experiments with a face detection system show that combining feature reduction with hierarchical classification leads to a speed-up by a factor of 335 with similar classification performance. 相似文献
16.
Process mining aims at gaining insights into business processes by analyzing the event data that is generated and recorded during process execution. The vast majority of existing process mining techniques works offline, i.e. using static, historical data, stored in event logs. Recently, the notion of online process mining has emerged, in which techniques are applied on live event streams, i.e. as the process executions unfold. Analyzing event streams allows us to gain instant insights into business processes. However, most online process mining techniques assume the input stream to be completely free of noise and other anomalous behavior. Hence, applying these techniques to real data leads to results of inferior quality. In this paper, we propose an event processor that enables us to filter out infrequent behavior from live event streams. Our experiments show that we are able to effectively filter out events from the input stream and, as such, improve online process mining results. 相似文献
17.
既有的基于数据挖掘技术的入侵检测将研究重点放在误用检测上。提出了基于数据挖掘技术的网络异常检测方案,并详细分析了核心模块的实现。首先使用静态关联规则挖掘算法和领域层面挖掘算法刻画系统的网络正常活动简档,然后通过动态关联规则挖掘算法和领域层面挖掘算法输出表征对系统攻击行为的可疑规则集,这些规则集结合从特征选择模块中提取网络行为特征作为分类器的输入,以进一步降低误报率。在由DAR-AP1998入侵检测评估数据集上的实验证明了该方法的有效性。最后,对数据挖掘技术在入侵检测领域中的既有研究工作做了,总结。 相似文献
18.
Rodrigo Verschae Javier Ruiz-del-Solar Mauricio Correa 《Machine Vision and Applications》2008,19(2):85-103
In this paper a unified learning framework for object detection and classification using nested cascades of boosted classifiers
is proposed. The most interesting aspect of this framework is the integration of powerful learning capabilities together with
effective training procedures, which allows building detection and classification systems with high accuracy, robustness,
processing speed, and training speed. The proposed framework allows us to build state of the art face detection, eyes detection,
and gender classification systems. The performance of these systems is validated and analyzed using standard face databases
(BioID, FERET and CMU-MIT), and a new face database (UCHFACE).
相似文献
Javier Ruiz-del-SolarEmail: |
19.
Yuliya Tarabalka Trym Vegard Haavardsholm Ingebjørg Kåsen Torbjørn Skauli 《Journal of Real-Time Image Processing》2009,4(3):287-300
Hyperspectral imaging, which records a detailed spectrum of light arriving in each pixel, has many potential uses in remote sensing as well as other application areas. Practical applications will typically require real-time processing of large data volumes recorded by a hyperspectral imager. This paper investigates the use of graphics processing units (GPU) for such real-time processing. In particular, the paper studies a hyperspectral anomaly detection algorithm based on normal mixture modelling of the background spectral distribution, a computationally demanding task relevant to military target detection and numerous other applications. The algorithm parts are analysed with respect to complexity and potential for parallellization. The computationally dominating parts are implemented on an Nvidia GeForce 8800 GPU using the Compute Unified Device Architecture programming interface. GPU computing performance is compared to a multi-core central processing unit implementation. Overall, the GPU implementation runs significantly faster, particularly for highly data-parallelizable and arithmetically intensive algorithm parts. For the parts related to covariance computation, the speed gain is less pronounced, probably due to a smaller ratio of arithmetic to memory access. Detection results on an actual data set demonstrate that the total speedup provided by the GPU is sufficient to enable real-time anomaly detection with normal mixture models even for an airborne hyperspectral imager with high spatial and spectral resolution. 相似文献
20.
《Journal of Visual Languages and Computing》2014,25(6):628-636
Crowd analysis and abnormal trajectories detection are hot topics in computer vision and pattern recognition. As more and more video monitoring equipments are installed in public places for public security and management, researches become urgent to learn the crowd behavior patterns through the trajectories obtained by the intelligent video surveillance technology. In this paper, the FCM (Fuzzy c-means) algorithm is adopted to cluster the source points and sink points of trajectories that are deemed as critical points into several groups, and then the trajectory clusters can be acquired. The feature information statistical histogram for each trajectory cluster which contains the motion information will be built after refining them with Hausdorff distances. Eventually, the local motion coherence between test trajectories and refined trajectory clusters will be used to judge whether they are abnormal. 相似文献