首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Single-phase La-substituted bismuth ferrite (Bi\(_{\boldsymbol {1-x}}\)La\(_{\boldsymbol {x}}\)FeO\(_{\mathbf {3}}\)) nanoparticles have been synthesized by thermal decomposition of a glyoxylate precursor. The crystal structure transition of BiFeO\(_{\mathbf {3}}\) from the rhombohedral (R3c) to the cubic \(\boldsymbol {Pm}\bar {\mathbf {3}}\boldsymbol {m}\) structure by La addition was confirmed by X-ray diffraction and infrared spectrometry methods. Furthermore, the Bi\(_{\boldsymbol {1-x}}\)La\(_{\boldsymbol {x}}\)FeO\(_{\mathbf {3}}\) nanoparticles showed a weak ferrimagnetism behaviour, while the magnetization increased from 0.18 to 0.48 emu g\(^{\mathbf {-1}}\) with La substitution. The Bi\(_{\boldsymbol {1-x}}\)La\(_{\boldsymbol {x}}\)FeO\(_{\mathbf {3}}\) nanoparticles exhibited strong absorption in the visible region with the optical band gap calculated from Tauc’s plot in the range of 2.19–2.15 eV. Furthermore, the effects of La substitution on the photodegradation of the methylene blue (MB) under visible light were also studied. The photodegradation of MB dye was enhanced from 64 to \(\sim \)99% with increasing La substitution from \(\boldsymbol {x =}\) 0 to 0.1 and then decreased to 8% for \(\boldsymbol {x =}\) 0.15.  相似文献   

2.
This paper deals with the semi-functional partial linear regression model \(Y={{\varvec{X}}}^\mathrm{T}{\varvec{\beta }}+m({\varvec{\chi }})+\varepsilon \) under \(\alpha \)-mixing conditions. \({\varvec{\beta }} \in \mathbb {R}^{p}\) and \(m(\cdot )\) denote an unknown vector and an unknown smooth real-valued operator, respectively. The covariates \({{\varvec{X}}}\) and \({\varvec{\chi }}\) are valued in \(\mathbb {R}^{p}\) and some infinite-dimensional space, respectively, and the random error \(\varepsilon \) verifies \(\mathbb {E}(\varepsilon |{{\varvec{X}}},{\varvec{\chi }})=0\). Naïve and wild bootstrap procedures are proposed to approximate the distribution of kernel-based estimators of \({\varvec{\beta }}\) and \(m(\chi )\), and their asymptotic validities are obtained. A simulation study shows the behavior (on finite sample sizes) of the proposed bootstrap methodology when applied to construct confidence intervals, while an application to real data concerning electricity market illustrates its usefulness in practice.  相似文献   

3.
New measurements are reported for the isochoric heat capacity of the ionic liquid substance 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([C6mim][NTf2]). These measurements extend the ranges of our earlier study (Polikhronidi et al. in Phys Chem Liq 52:657, 2014) by 5 % of the compressed liquid density and by 75 K. An adiabatic calorimeter was used to measure one-phase \((C_{\mathrm{V1}})\) liquid and two-phase \((C_{\mathrm{V2}})\) liquid + vapor isochoric heat capacities, densities \((\rho _s)\), and phase-transition temperatures \((T_s)\) of the ionic liquid (IL) substance. The combined expanded uncertainty of the density \(\rho \) and isochoric heat capacity \(C_\mathrm{V}\) measurements at the 95 % confidence level with a coverage factor of \(k = 2\) is estimated to be 0.15 % and 3 %, respectively. Measurements are concentrated in the immediate vicinity of the liquid + vapor phase-transition curve, in order to closely observe phase transitions. The present measurements and those of our earlier study are analyzed together and are presented in terms of thermodynamic properties \((T_s\), \(\rho _s\), \(C_{\mathrm{V1}}\) and \(C_{\mathrm{V2}})\) evaluated at saturation and in terms of key-derived thermodynamic properties \(C_\mathrm{P}\), \(C_\mathrm{S}\), \(W_\mathrm{S}^{{\prime }}\), \(K_{\mathrm{TS}}^{{\prime }}\), \(\left( {\partial P/\partial T} \right) _{\mathrm{V}}^{\prime }\), and \(\left( {\partial V/\partial T} \right) _\mathbf{P}^{\prime })\) on the liquid + vapor phase-transition curve. A thermodynamic relation by Yang and Yang is used to confirm the internal consistency of measured two-phase heat capacities \(C_{\mathrm{V2}} \), which are observed to fall perfectly on a line as a function of specific volume at a constant temperature. The observed linear behavior is exploited to evaluate contributions to the quantity \(C_{\mathrm{V2}} = f(V, T)\) from chemical potential \(C_{{\mathrm{V}\upmu }} =-T\frac{\mathrm{d}^{{2}}\mu }{\mathrm{d}T^{2}}\) and from vapor pressure \(C_{\mathrm{VP}} =VT\frac{\mathrm{d}^{2}P_{\mathrm{S}} }{\mathrm{d}T^{2}}\). The physical nature and specific details of the temperature and specific volume dependence of the two-phase isochoric heat capacity and some features of the other derived thermodynamic properties of IL at liquid saturation curve are considered in detail.  相似文献   

4.
An effort was made to develop semiconductor oxide-based room temperature dilute magnetic semiconductor (DMS) thin films based on wide band gap and transparent host lattice with transition metal substitution. The Sn\(_{\mathrm {1}-x}\)Ni\(_{x}\textit {O}_{\mathrm {2}}\) (\(x\,= \mathrm {0.00, 0.03, 0.05, 0.07, 0.10, and \,0.15}\)) thin film samples were prepared on glass substrates by flash evaporation technique. All the samples were shown single phase crystalline rutile structure of host SnO\(_{\mathrm {2}}\) with dominant (110) orientation. The Ni substitution promotes reduction of average crystallite size in SnO\(_{\mathrm {2}}\) as evidenced from the reduction of crystallite size from 40 (SnO\(_{\mathrm {2}}\)) to 20 nm (Sn\(_{\mathrm {0.85}}\)Ni\(_{\mathrm {0.15}}\textit {O}_{\mathrm {2}}\)). In the energy dispersive spectra as well as X-ray photoelectron spectra of all the samples show, the chemical compositions are close to stoichiometric with noticeable oxygen deficiency. The crystalline films were formed by coalescence of oval-shaped polycrystalline particles of 100 nm size as evidenced from the electron micrographs. The energy band gap of DMS films decreases from 4 (SnO\(_{\mathrm {2}}\)) to 3.8 eV (x \(=\) 0.05) with increase of Ni content. The magnetic hysteresis loops of all the samples at room temperature show soft ferromagnetic nature except for SnO\(_{\mathrm {2}}\) film. The SnO\(_{\mathrm {2}}\) films show diamagnetic nature and it converts into ferromagnetic upon substitution of 3 % Sn\(^{\mathrm {4+}}\) by Ni\(^{\mathrm {2+}}\). The robust intrinsic ferromagnetism (saturation magnetization, 21 emu/cm\(^{\mathrm {3}}\)). Further increase of Ni content weakens ferromagnetic strength due to Ni-O antiferromagnetic interactions among the nearest neighbour Ni ions via O\(^{\mathrm {2-}}\) ions. The observed magnetic properties were best described by bound magnetic polarons model.  相似文献   

5.
The thermal conductivity data of 40 Canadian soils at dryness \((\lambda _{\mathrm{dry}})\) and at full saturation \((\lambda _{\mathrm{sat}})\) were used to verify 13 predictive models, i.e., four mechanistic, four semi-empirical and five empirical equations. The performance of each model, for \(\lambda _{\mathrm{dry}}\) and \(\lambda _{\mathrm{sat}}\), was evaluated using a standard deviation (SD) formula. Among the mechanistic models applied to dry soils, the closest \(\lambda _{\mathrm{dry}}\) estimates were obtained by MaxRTCM \((\textit{SD} = \pm ~0.018\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1})\), followed by de Vries and a series-parallel model (\(\hbox {S-}{\vert }{\vert }\)). Among the semi-empirical equations (deVries-ave, Advanced Geometric Mean Model (A-GMM), Chaudhary and Bhandari (C–B) and Chen’s equation), the closest \(\lambda _{\mathrm{dry}}\) estimates were obtained by the C–B model \((\pm ~0.022\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1})\). Among the empirical equations, the top \(\lambda _{\mathrm{dry}}\) estimates were given by CDry-40 \((\pm ~0.021\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1}\) and \(\pm ~0.018\,\hbox { Wm}^{-1}\cdot \hbox {K}^{-1}\) for18-coarse and 22-fine soils, respectively). In addition, \(\lambda _{\mathrm{dry}}\) and \(\lambda _{\mathrm{sat}}\) models were applied to the \(\lambda _{\mathrm{sat}}\) database of 21 other soils. From all the models tested, only the maxRTCM and the CDry-40 models provided the closest \(\lambda _{\mathrm{dry}}\) estimates for the 40 Canadian soils as well as the 21 soils. The best \(\lambda _{\mathrm{sat}}\) estimates for the 40-Canadian soils and the 21 soils were given by the A-GMM and the \(\hbox {S-}{\vert }{\vert }\) model.  相似文献   

6.
Electrodeposited ZnO coatings suffer severe capacity fading when used as conversion anodes in sealed Li cells. Capacity fading is attributed to (i) the large charge transfer resistance, \(R_{\mathrm{ct}}\) (300–700 \(\Omega \)) and (ii) the low \(\hbox {Li}^{+}\) ion diffusion coefficient, \(D_{\mathrm{Li}}^{+}\ (10^{-15}\) to \(10^{-13}\hbox { cm}^{2}\hbox { s}^{-1})\). The measured value of \(R_{\mathrm{ct}}\) is nearly 10 times higher and \(D_{\mathrm{Li}}^{+}\) 10–100 times lower than the corresponding values for \(\hbox {Cu}_{2}\hbox {O}\), which delivers a stable reversible capacity.  相似文献   

7.
8.
9.
Thin films of \(\hbox {Cu}_{2}\hbox {ZnSnS}_{4}\) (CZTS), a promising solar cell absorber, were grown by thermal evaporation of ZnS, Sn and Cu precursors and subsequent annealing in sulphur atmosphere. Two aspects are chosen for investigation: (i) the effect of substrate temperature (\(T_{\mathrm{S}})\) used for the deposition of precursors and (ii) (\(\hbox {N}_{2}{+}\hbox {S}_{2})\) pressure during annealing, to study their impact on the growth of CZTS films. X-ray diffraction analysis of these films revealed the structure to be kesterite with (112) preferred orientation. Crystallite size is found to slightly increase with increase in \(T_{\mathrm{S}}\) as well as pressure during annealing. From optical absorption studies, the direct optical band gap of CZTS films is found to be \({\sim }\)1.45 eV. Room temperature electrical resistivity of the films obtained on annealing the stacks at 10 and 100 mbar pressures is found to be in the ranges 25–55 and 5–25 \(\Omega \) cm, respectively, depending on \(T_{\mathrm{S}}\). Films prepared by annealing the stack deposited at 300\({^{\circ }}\)C under 100 mbar pressure for 90 min are slightly Cu-poor and Zn-rich with compact grain morphology.  相似文献   

10.
The critical temperature (TC) of MgB2, one of the key factors limiting its application, is highly desired to be improved. On the basis of the meta-material structure, we prepared a smart meta-superconductor structure consisting of MgB2 micro-particles and inhomogeneous phases by an ex situ process. The effect of inhomogeneous phase on the TC of smart meta-superconductor MgB2 was investigated. Results showed that the onset temperature (\(T_{\mathrm {C}}^{\text {on}}\)) of doping samples was lower than those of pure MgB2. However, the offset temperature (\({T}_{\mathrm {C}}^{\text {off}}\)) of the sample doped with Y2O3:Eu3+ nanosheets with a thickness of 2 ~ 3 nm which is much less than the coherence length of MgB2 is 1.2 K higher than that of pure MgB2. The effect of the applied electric field on the TC of the sample was also studied. Results indicated that with the increase of current, \({T}_{\mathrm {C}}^{\text {on}}\) is slightly increased in the samples doping with different inhomogeneous phases. With increasing current, the \({T}_{\mathrm {C}}^{\text {off}}\) of the samples doped with nonluminous inhomogeneous phases was decreased. However, the \({T}_{\mathrm {C}}^{\text {off}}\) of the luminescent inhomogeneous phase doping samples increased and then decreased with increasing current.  相似文献   

11.
DyNi\(_{2}\)B\(_{2}\)C superconducts at \(T_{c} \approx 6\,{\text{K}}\) and orders antiferromagnetically at \(T_{N}\approx 10\,{\text{K}}.\) Its non-superconducting isomorph DyCo\(_{2}\)B\(_{2}\)C is a ferromagnet with \(T_{C}\approx 6\,{\text{K}}.\) With the aim of mapping out the magnetic properties, in particular magnetic structures, of their solid solutions, we synthesized \(^{11}\)B-enriched Dy(Co\(_{x}\)Ni\(_{1-x}\))\(_{2}\)B\(_{2}\)C (\(x=0.2,0.4,0.6,0.8\)). We investigated the evolution of their magnetic, thermal and transport properties by means of the magnetization, resistivity, specific heat and neutron diffraction techniques. Their crystal structures were confirmed to be ThCr\(_{2}\)-Si\(_{2}\)-type tetragonal (I4/mmm) phase. The magnetic structure was found to be antiferromagnetic with k0.2 = (0, 0, 1) for x = 0.2; helicoidal with k\(_{0.4}\) = (0, 0, 0.49) and k\(_{0.6}\) = (0, 0, 0.46) for, respectively, x = 0.4 and 0.6 and ferromagnetic with k\(_{0.8}\) = (0, 0, 0) for x = 0.8. We discuss the evolution of such magnetic modes assuming a scenario of an idealized one-dimensional chain of transverse magnetic moments.  相似文献   

12.
The diffusion coefficient \(D_{{{\text{O}}_{2} }}\), the porosity and the pore structure of mortars produced with a Portland cement and a range of blended cements containing limestone powder, microsilica, portlandite or slag were measured in the non-carbonated and the carbonated state. Additionally, the setup for measuring O2 diffusion was adapted to measure also the CO2 diffusion of the carbonated mortars. The diffusion coefficient \(D_{{{\text{O}}_{2} }}\) and the total porosity were increased in the mortars containing microsilica and slag, while they were decreased in the other mortars due to carbonation. Invariably, the pore structure became coarser in all samples. The relationship between diffusion coefficients \(D_{{{\text{O}}_{2} }}\) and \(D_{{{\text{CO}}_{2} }}\) in the carbonated mortars was always linear, with \(D_{{{\text{O}}_{2} }}\) systematically higher by factor of 1.37. As this factor broadly agrees with what was found in the scant literature about CO2 diffusion, it could be used for estimating \(D_{{{\text{CO}}_{2} }}\) of carbonated mortar and concrete based on measurements of O2 diffusion.  相似文献   

13.
14.
Kinetics of defects formation, reaction process and formation of solid solution in powder mixtures of ZnO and MnO2 induced by prolonged mechanical treatment (MT) have been investigated (X-ray, FTIR, EPR). At MT in zones of deformation-destruction the different defects (\( {\text{V}}_{{\text{Zn}}}^ - :{\text{Zn}}_{\text{i}}^{\text{0}} \) (I), \( {\text{V}}_{{\text{Zn}}}^ - \) (II), and \( {\text{(V}}_{{\text{Zn}}}^ - {\text{)}}_{\text{2}}^ - \) (III) centers at all) are forming. The defects have various physical and chemical properties, and have different activation energies of annealing, Eact The part of these defects is responsible for the processes of hydration and carbonation of samples. In turn, the formation of defects is accompanied by development of various mechanothermical processes, which increase temperature of the sample, T MT, with the increasing of duration of MT, t MT. The increasing of t MT activates the reactionary processes: promotes a consecutive annealing the «low-temperature» defects having small values of Eact (I, II and III) and also leads to formation of Mn2+-doped Zn(OH)2. With the further increase of t MT, the process of MT is accompanied by an increasing of temperature of samples up to equilibrium, T eq and accumulation of “high-temperature” defects in the sample. As a result, in the sample the conditions for intensification of volumetric diffusion processes and formation of Mn2+-doped ZnO were created.  相似文献   

15.
The shape-memory response (SMR) of “click” thiol-epoxy polymers produced using latent catalysts, with different network structure and thermo-mechanical properties, was tested on unconstrained shape-recovery processes under isothermal conditions. Experiments at several programming temperatures (\(T_{\mathrm{prog}}\)) and isothermal-recovery temperatures (\(T_{\mathrm{iso}}\)) were carried out, and the shape-memory stability was analyzed through various consecutive shape-memory cycles. The temperature profile during the isothermal-recovery experiments was monitored, and it showed that the shape-recovery process takes place while the sample is becoming thermally stable and before stable isothermal temperature conditions are eventually reached. The shape-recovery process takes place in two different stages regardless of \(T_{\mathrm{iso}}\): a slow initial stage until the process is triggered at a temperature strongly related with the beginning of network relaxation, followed by the typical exponential decay of the relaxation processes until completion at a temperature below or very close to \(T_{\mathrm{g}}\). The shape-recovery process is slower in materials with more densely crosslinked and hindered network structures. The shape-recovery time (\(t_{\mathrm{sr}}\)) is significantly reduced when the isothermal-recovery temperature \(T_{\mathrm{iso}}\) increases from below to above \(T_{\mathrm{g}}\) because the network relaxation dynamics accelerates. However, the temperature range from the beginning to the end of the recovery process is hardly affected by \(T_{\mathrm{iso}}\); at higher \(T_{\mathrm{iso}}\) it is only slightly shifted to higher temperatures. These results suggest that the shape-recovery process can be controlled by changing the network structure and working at \(T_{\mathrm{iso}} < T_{\mathrm{g}}\) to maximize the effect of the structure and/or by increasing \(T_{\mathrm{iso}}\) to minimize the effect but increasing the shape-recovery rate.  相似文献   

16.
\(\hbox {SrTiO}_{3}\) and Bi-doped \(\hbox {SrTiO}_{3}\) films were fabricated with different device structures using the sol–gel method for non-volatile memory applications, and their resistance-switching behaviour, endurance and retention characteristics were investigated. \(\hbox {SrTiO}_{3}\) and \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si or Pt have the same phase structure, morphologies and grain size; however, the grain size of the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si is slightly larger than those of the \(\hbox {SrTiO}_{3}\) films grown on Si and the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Pt. The \(\hbox {SrTiO}_{3}\) or \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si or Pt all exhibit bipolar resistive-switching behaviour and follow the same conductive mechanism; however, the \(\hbox {Ag}/\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}/\hbox {Si}\) device possesses the highest \(R_{\mathrm{HRS}}{/}R_{\mathrm{LRS}}\) of \(10^{5}\) and the best endurance and retention characteristics. The doping of Bi is conducive to enhance the \(R_{\mathrm{HRS}}{/}R_{\mathrm{LRS}}\) of the \(\hbox {SrTiO}_{3}\) films; meanwhile, the Si substrates help improve the endurance and retention characteristics of the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films.  相似文献   

17.
\(\hbox {BiO}_{0.75}\hbox {F}_{0.25}\hbox {BiS}_{2}\) crystallizes in tetragonal CeOBiS\(_{2}\) structure (S. G. P4/nmm). We have investigated the effect of pressure on magnetization measurements. Our studies suggest improved superconducting properties in polycrystalline samples of \(\hbox {BiO}_{0.75}\hbox {F}_{0.25}\hbox {BiS}_{2}\). The \(T_{\mathrm{c}}\) in our sample is 5.3 K, at ambient pressure, which is marginal but definite enhancement over \(T_{\mathrm{c}}\) reported earlier (= 5.1 K). The upper critical field \(H_{\mathrm{c}2}\)(0) is greater than 3 T, which is higher than earlier report on this material. As determined from the MH curve, both \(H_{\mathrm{c}2}\) and \(H_{\mathrm{c}1}\) decrease under external pressure P (0 \(\le P \le \) 1 GPa). We observe a decrease in critical current density and transition temperature on applying pressure in \(\hbox {BiO}_{0.75}\hbox {F}_{0.25}\hbox {BiS}_{2}\).  相似文献   

18.
NiWP alloy coatings were prepared by electrodeposition, and the effects of ferrous chloride (\(\hbox {FeCl}_{2})\), sodium tungstate (\(\hbox {Na}_{2}\hbox {WO}_{4})\) and current density (\(D_{\mathrm{K}}\)) on the properties of the coatings were studied. The results show that upon increasing the concentration of \(\hbox {FeCl}_{2}\), initially the Fe content of the coating increased and then tended to be stable; the deposition rate and microhardness of coating decreased when the cathodic current efficiency (\(\eta \)) initially increased and then decreased; and for a \(\hbox {FeCl}_{2}\) concentration of \(3.6\, \hbox {g\,l}^{-1}\), the cathodic current efficiency reached its maximum of 74.23%. Upon increasing the concentration of \(\hbox {Na}_{2}\hbox {WO}_{4}\), the W content and microhardness of the coatings increased; the deposition rate and the cathode current efficiency initially increased and then decreased. The cathodic current efficiency reached the maximum value of 70.33% with a \(\hbox {Na}_{2}\hbox {WO}_{4}\) concentration of 50 g \(\hbox {l}^{-1}\), whereas the deposition rate is maximum at 8.67 \(\upmu \hbox {m}\,\hbox {h}^{-1}\) with a \(\hbox {Na}_{2}\hbox {WO}_{4}\) concentration of \(40\, \hbox {g\,l}^{-1}\). Upon increasing the \(D_{\mathrm{K}}\), the deposition rate, microhardness, Fe and W content of the coatings increased, the cathodic current efficiency increases first increased and then decreased. When \(D_{\mathrm{K}}\) was 4 A dm\(^{-2}\), the current efficiency reached the maximum of 73.64%.  相似文献   

19.
Bluish coloured glasses are obtained from the composition PbCl\(_{2}\)–PbO–B\(_{2}\)O\(_{3}\) doped with Cu\(^{2+}\) ions. Basic physical properties and spectroscopic studies (optical absorption, electron paramagnetic resonance, Fourier transform infrared and Raman spectroscopies) were carried out on these samples. The increase in PbCl\(_{2}\) content resulted in the decrease in density and increase in molar volume. At optical frequencies, band gaps and Urbach energies were evaluated and their variation is explained. Spin-Hamiltonian parameters (SHP) obtained from the EPR spectra suggest that the ligand environment around Cu\(^{2+}\) is tetragonally distorted octahedral sites and the orbital \(d_{x^{2}-{y}^{2}} \) is the ground state. The characteristics broad bands in the optical absorption spectra are assigned to the \(^{2}\)B\(_{\mathrm{1g}}\,\rightarrow \, {}^{2}\)B\(_{\mathrm{2g}}\) transition. The bonding coefficient values were evaluated using optical data and SHP. FTIR studies suggested that the glass structure is built up of BO\(_{3}\) and BO\(_{4}\) units. The presence of diborate, pyroborate, pentaborate groups, etc. in the glass network was confirmed from Raman spectra.  相似文献   

20.
We prepared a \({{\text{Zn}}_{1 - {\text{x}}}}{{\text{Co}}_{\text{x}}}{\text{O}}\) system as polycrystalline nanoparticles with various compositions \((x=0.01, 0.02, 0.03, 0.04, 0.05, {\text{and}} \; 0.10)\) using sol–gel techniques and use zinc acetate dihydrate and cobalt acetate tetrahydrate as precursors. Nanoparticles were pressed under a pressure of 4 tons for 5 min into 2 mm thick disk shaped compacts 10 mm in diameter, which were then annealed at 500 °C for 30 min under a 5B Ar atmoshpere. We carried out X-ray diffraction, scanning electron microscopy, and Vickers microhardness analyses of Co doped \({\text{Zno}}\)-based nano bulk materials in detail, focusing especially on theoretical and experimental mechanical analyses. We found that calculated values were higher than the Vickers microhardness experimental results. Doping ZnO with Co did not lead to significant changes in the a and c axes. The calculated hardness values are larger than those from the experiments. Acoording to the SEM and EDS images grain size decreases as Co doping increases and the amount of Zn decreases with Co doping, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号