共查询到17条相似文献,搜索用时 78 毫秒
1.
2.
3.
基于改进粒子群算法的小波神经网络分类器 总被引:2,自引:3,他引:2
针对传统BP-WNN和基本PSO-WNN算法收敛速度慢和泛化性能低的缺陷,在应用李雅普诺夫理论分析得到单个粒子稳定收敛的参数取值条件基础上,提出一种粒子群改进算法,并利用该算法来训练小波神经网络权值,以此构建一种高效的粒子群小波神经网络分类器。通过Iris标准分类数据集进行测试,结果表明所提出的改进算法与BP-WNN,PSO-WNN等经典算法相比,网络更易于全局收敛,迭代次数少、函数逼近误差小、分类精度高。将该分类器应用于非线性辨识和固井质量评价中,均取得了不错的效果,表明该分类器泛化能力强,具有良好的使用价值和应用前景。 相似文献
4.
为减少高强钢冲压成形扭曲回弹,提出一种基于渐变凹模圆角半径的模具补偿方法。以高强钢TRIP780双C件为研究对象,采用板料冲压成形仿真软件DYNAFORM对该双C件的冲压、扭曲回弹过程进行数值模拟。提出一种评价双C件扭曲回弹程度的指标,并进行双C件扭曲回弹试验,通过三坐标测量仪测量扭曲回弹角,对有限元模型进行了验证。以冲压成形后的扭曲回弹为优化目标,结合相关的工艺参数,利用BP神经网络,基于正交试验,建立凹模圆角半径渐变量、工艺参数与扭曲回弹角之间的网络模型。最后采用遗传算法对该模型迭代寻优获得最优凹模圆角半径渐变量和工艺参数。通过对比优化前后的扭曲回弹角,证明了优化流程有效地减少了双C件扭曲回弹。该方法为扭曲回弹的控制提供了一种新的思路。 相似文献
5.
针对传统粒子群算法易陷入局部最优解的问题,提出了一种变权重粒子群算法.该算法通过引入交叉权重因子和粒子个体状态最优权值,对传统粒子群算法进行了优化,使粒子在移动过程中利用更多的信息来调整各自的移动方向,扩大粒子在运动过程中的自我认知范围,提高了粒子群算法的收敛精度和收敛速度.最后,利用改进的变权重粒子群算法对小波神经网络控制器进行优化,有效地验证了变权重粒子群算法的精确性. 相似文献
6.
为了提高数控铣削加工的生产效率,降低生产成本,同时改善生产工件的加工质量,根据最优化思想,建立以铣削加工参数为优化变量,以铣削力、机床主轴转速和加工面粗糙度等为约束条件,以最短加工时间和最低生产成本为目标的优化函数。在标准粒子群算法的基础之上,引入惩罚函数,将多约束优化问题转变为无约束优化问题,改善了求解过程的复杂性;同时,针对粒子群算法容易陷入局部最优的问题,将其与模拟退火算法结合,增强粒子的全局搜索能力,改善粒子的局部收敛性。通过仿真实例验证了改进粒子群算法的有效性和优越性,改善了工件的加工时间与生产成本。 相似文献
7.
张文华 《机械工程与自动化》2012,(3):104-106
BP神经网络PID控制是利用BP神经网络的自学习和逼近任意非线性函数功能,对PID控制器的三个参数进行在线整定,但网络初始权值的选取困难.采用改进的PSO算法优化BP神经网络的初始权值,并对基于PAO算法的BP神经网络PID控制进行仿真实验.仿真结果表明,PSO算法使得网络初始权值的选取比较快速,系统的性能有所提高. 相似文献
8.
针对汽车发动机装配过程中缸体泄漏问题,结合Back Propagation(BP)神经网络及粒子群优化(Particle Swarm Optimization, PSO)算法,提出了一种发动机装配工艺参数优化方法。首先,使用BP神经网络建立了生产工艺参数与质量指标之间的非线性映射关系,并以此作为泄漏率预测模型。其次,根据实际生产需求,应用皮尔逊相关性分析法求解得到相关性最强的部分工位工艺参数,并以其作为后续优化对象。最后,以BP神经网络预测模型作为适应度函数,使用粒子群优化算法求解得到工艺参数的最优值。使用400台发动机的实际生产数据进行试验。试验结果显示,BP神经网络具有较准确的预测效果,结合粒子群优化算法得到了优化后的工艺参数值,显著降低了发动机的泄漏率,具有一定的指导意义。 相似文献
9.
10.
文章利用粒子群算法优化神经网络的参数,提出了基于粒子群算法的神经网络建模方法。为了提高基本粒子群算法的搜索性能,采用了基于外推技巧的引导型更新公式,并在粒子的搜索过程中,不断监测各个粒子的最优位置,多次没有变化并且距离优化目标太远时,粒子跳出当前位置继续搜索,从而避免陷入局部值。最后使用改进后的粒子群神经网络算法对函数进行拟合,仿真结果表明,新的算法有较好的收敛性。 相似文献
11.
提取电机定予电流信号及转于振动信号,构成用于电机故障诊断网络的训练及测试样本.用BP神经网络建立诊断输入征兆与故障输出间的映射关系,引入改进粒子群优化的策略,对神经网络权值和阀值进行优化,提高了网络系统诊断的可靠性.仿真对比研究表明,经粒子群优化后的BP网络收敛速度显著提高,更适合于电机类故障诊断的要求. 相似文献
12.
将微粒群算法和多层前馈神经网络相结合,提出了一种利用微粒群算法代替BP算法训练多层前馈神经网络权值,以实现神经网络控制的方法,并对非线性模型的辨识问题和一级直线倒立摆的控制问题进行了仿真研究。仿真实验表明:微粒群算法在神经网络控制及非线性模型辨识方面效果良好,具有良好的应用前景。 相似文献
13.
提出了基于粒子群算法的汽车ABS控制器参数的优化设计方法。该方法将ABS控制器的参数编码为粒子群中粒子的向量,通过粒子群在参数空间的寻优得到优化的控制参数。然后分别以未优化的参数和优化的参数作为控制参数进行了仿真试验,仿真结果证实了该算法的有效性。最后以优化的参数作为控制参数进行路试,取得了比较满意的制动效果。 相似文献
14.
在地面上精确测量航天器的惯性参数是困难的,并且由于燃料的消耗、航天器的交会对接、载荷及姿态的变化等因素将会使航天器的惯性参数在轨发生变化。因而航天器的控制系统、状态估计系统将会受到航天器惯性参数变化的影响。在轨辨识出航天器的惯性参数,可以为更加优化、实时的控制航天器服务。文中提出了一种基于粒子群优化算法的航天器惯性参数辨识算法。建立了引入带有模型误差以及由于航天器惯性参数变化引起的误差的航天器姿态运动学与动力学模型,基于模型误差最小准则建立目标函数,利用改进的粒子群优化算法对模型误差进行实时估计,从而实现对航天器惯性参数的辨识,并将其应用到航天器的姿态控制中,并通过仿真实验证明了该算法的有效性以及实用性。 相似文献
15.
提出了一种可以不考虑系统的数学模型以及外部的工作状况,直接通过在可行域内搜索最优解来找到合适的控制器参数的方法。以伺服系统的速度环控制器为研究对象,将粒子群优化算法应用于控制器的参数自整定中,设计了参数自整定PI控制器。在Matlab/Simulink环境下建立永磁同步电机伺服系统的仿真模型,对比了通过人工参数整定与基于粒子群优化算法的参数整定两种方法。仿真实验结果表明,该方法整定出的控制器参数可以使伺服系统的性能得到较大提高,具有较大的应用价值。 相似文献
16.
采用人工鱼群算法与BP神经网络相结合的方法建立了分块压边力与成形质量的映射关系。首先以分块压边力为设计变量,通过基于最大最小原则的拉丁超立方取样设计方法抽取了BP神经网络的训练样本,并将通过仿真软件获得的成形质量指标作为BP神经网络的训练输出;其次通过人工鱼群算法优化的BP神经网络建立了分块压边力与成形质量的映射关系;然后采用粒子群算法对该映射函数关系式进行优化,得到最优分块压边力;最后将该最优分块压边力成形效果与整体压边力成形效果进行对比,结果表明成形效果大大改善。研究表明,采用该方法可以快速计算最优分块压边力,克服了分块压边力计算困难的缺点。 相似文献