首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
叶顶间隙泄漏是造成轴流风机损失的重要原因之一,在吸力面安装叶尖小翼能抑制一定程度的叶顶间隙流动,提高轴流风机气动性能。本文数值模拟了在吸力面安装不同宽度以及长度叶尖小翼对轴流风机内部流动及性能的影响。结果表明,增大吸力面叶尖小翼宽度可减小叶顶间隙流,延缓叶顶泄漏涡的生成和脱落,使其向远离吸力面偏移,减小了分离损失。当宽度为3倍叶片厚度时,设计工况全压效率提高了0.73%。而不同长度吸力面叶尖小翼的结果对比表明,当叶尖小翼长度为0.6倍弦长时,即可达到1倍弦长叶尖小翼对叶顶间隙流动同样的改善效果。  相似文献   

2.
以NACA 65-1810压气机为研究对象,探讨了叶顶间隙对压气机流动特性的影响。在ICEM中建立结构化网格,针对不同叶顶间隙方案采用SST k-ε双方程湍流模型,对压气机流场进行了数值模拟,分析了叶顶间隙对压气机平面叶栅气动性能、泄漏涡流及平面叶栅性能的影响。结果显示,紧密间隙时会出现逆流现象;减小叶顶间隙不仅可以较好地抑制泄漏涡流,而且能够减小压力损失,从而提高平面叶栅的效率,改善压气机平面叶栅的性能。  相似文献   

3.
来流附面层对吸附式压气机叶栅影响的数值研究   总被引:3,自引:0,他引:3  
数值研究低速条件下来流附面层特性对吸附式压气机叶栅气动性能的影响,在不同正冲角时,设计不同方案的附面层厚度分布,对比分析叶栅出口气动参数的分布以及叶栅内的三维流场结构,讨论不同来流附面层情况下在压气机叶栅中采用附面层吸除的效果。结果表明,数值模拟结果与试验数据有较好的一致性;附面层厚度的增加导致角区流动三维性增强,且变冲角性能下降,二次流横向作用和角区范围的增加使得附面层抽吸效果减弱;当来流附面层厚度增加时,通过增加抽吸量可以有效降低强吸附式压气机叶栅的损失,变冲角性能得到改善。  相似文献   

4.
为精简附面层抽吸结构、提升吸附式压气机的工程应用性,提出将串列叶栅技术与端壁附面层抽吸技术相结合的主/被动流动联合控制技术。以某多级高负荷吸附式压气机末级静子作为研究对象,借助数值模拟的方法,探讨串列叶栅技术、端壁附面层抽吸技术以及主/被动流动联合控制技术对原型扩压叶栅内部流场结构及气动损失的影响。研究结果表明,主/被动流动联合控制技术结合了两种流动控制技术的优势,对原型高负荷扩压叶栅内部复杂流动的控制效果明显优于单一流动控制技术,通过应用更少的附面层抽吸量,有效地抑制了角区失速的促发,缓解了二维叶型分离流动,叶栅出口参数沿展向分布更为均匀,当端壁附面层抽吸总量为进口流量的0.90%时,总压损失降低了59%。  相似文献   

5.
弯曲叶片是改善压气机近端壁流动的有效技术手段之一。为探索叶片弯曲对高负荷压气机叶栅流场的影响机理,在初始高负荷直列叶栅的基础上,设计了不同正/反弯曲水平的叶栅,并采用数值模拟方法对系列叶栅进行研究。研究发现:叶片正弯曲形成了中间静压低、两端静压高的"C"形静压分布,可有效改善压气机叶栅近端壁流场,显著抑制角区分离,使得端壁区域扩压能力提高;正弯曲可增大叶展中部区域负荷,恶化叶中流场,增大流动分离;叶片反弯曲形成了中间静压高、两端静压低的反"C"形静压分布,可显著恶化近端壁区流场,角区分离区增大,端壁区域扩压能力降低,叶中流场有所改善。  相似文献   

6.
轴流压气机是大型燃气轮机的重要部件。然而由于端壁附面层的影响,多级轴压气机的后面几级静叶上端壁会出现流动分离现象,造成上端壁区域的流动阻塞,使得压气机的通流能力降低,从而流动损失增加。文中针对一多级轴流压气机的末两级,采用CDA对动静叶进行优化设计分析。数值研究表明,经优化设计后,能够有效改善端区的流动情况,提高压气机的通流能力,提高压气机的效率及增压比。这对轴流压气机的优化设计具有一定的借鉴意义。  相似文献   

7.
《机械科学与技术》2017,(9):1452-1457
针对压气机叶栅角区流动易分离的特点,提出一种在叶栅前缘安装小叶片来抑制角区分离的新型流动控制方法。在利用叶栅试验数据确认数值模拟的可靠性后,对不同攻角下安装小叶片前后叶栅的流场特性进行了数值研究。结果表明:在-6°到9°攻角范围内小叶片改善了扩压叶栅的气动性能,使得总压损失减小,静压升增大。小叶片能使叶栅角区前缘分离点后移,角区分离线后的反流区面积减小,改善了角区流动;更多的流体汇聚到中间叶高,增强叶中部载荷,提高了叶栅的扩压能力。  相似文献   

8.
大转角、超低展弦比叶栅在工程中,多应用于离心压气机轴流扩压器部分,该叶栅上下端壁附面层影响严重,通常存在流动分离现象。通过NUMECA软件对7种叶型叶栅的流场进行数值模拟,分析了各个叶型叶栅在相同进口条件下的不同性能参数,归纳了其原因,找到了性能最好的叶型,得出的结论是叶根到叶尖全部前加载叶型性能最好。  相似文献   

9.
本文以跨声速扩压叶栅为研究对象,采用数值模拟方法,研究了附面层抽吸对扩压静叶叶栅角区分离流动控制效果和机理。为探究不同抽吸方案对叶栅角区分离的影响以及对叶栅变冲角性能影响,在上端壁处开设流向槽进行抽吸。结果表明附面层抽吸能有效降低叶栅流动损失,提高附面层动能,避免低能流体过早分离,减小角区损失。随冲角增大,叶栅通道内二次流流动加剧,角区分离严重且分离提前。附面层抽吸能控制端壁低能流体向吸力面迁移的能力,明显改善静叶叶栅气动性能。  相似文献   

10.
串列叶栅是提高轴流压气机气动负荷的有效途径。在串列转子设计中,前后排转子的周向相对位置对其效率和失速裕度具有重要影响。研究发现当后排转子前缘靠近前排转子压力面时,串列转子效率和失速裕度均要优于其他周向布局形式。在设计工况,后排转子的势影响对前排转子吸力面流动有着重要影响,当后排转子前缘逐步靠近前排转子压力面时,可以改善前排转子吸力面尾缘区域的压力梯度,避免吸力面发生流动分离;在近失速工况,当后排转子前缘靠近前排转子压力面时,利用后排叶尖泄漏流与前排尾迹之间的流动掺混,可以有效减小后排通道中叶尖的气动堵塞,有效拓宽串列转子的失速裕度。  相似文献   

11.
The tip gap flow and aerodynamic loss generation over a plane tip equipped with a “constant-width suction-side” (CWSS) winglet and a “varying-width suction-side” (VWSS) winglet have been investigated in a turbine cascade. For a fixed tip gap of h/c = 2.0%, three different winglet widths of w/p = 5.28, 10.55, and 15.83% are tested for the CWSS winglet. The VWSS winglet is designed based on flow visualization and has almost the same winglet area as the CWSS winglet of w/p = 15.83%. In general, the suction-side winglets have a role to increase aerodynamic loss in the tip leakage vortex region but reduce aerodynamic loss in the passage vortex region. For the CWSS winglet, the total-pressure loss coefficient mass-averaged all over the measurement plane has no appreciable changes with increasing w/p from 0.0 to 10.55%, but tends to decrease with further increment of w/p. The VWSS winglet performs better in reducing aerodynamic loss in the passage vortex region than the CWSS winglet of w/p = 15.83% but leads to a little bit higher aerodynamic loss in the tip leakage vortex region. The aerodynamic loss reduction by the VWSS winglet is 7.4% in comparison with the plane tip without winglet, and is about 60% lower than that by the widest CWSS winglet.  相似文献   

12.
The effects of winglet offset distance, winglet coverage, and winglet cross section on the over-tip leakage loss for the plane tip have been investigated experimentally in a turbine blade cascade for a tip gap height-to-span ratio of h/s = 1.36 %. The results show that the over-tip leakage loss for the full coverage winglet increases steeply with increasing the winglet offset distance. This loss generation is attributed to flow disturbances over the forward-facing and backward-facing steps within the tip gap. The winglet flush mounted to the tip surface provides the best result. With the leading edge winglet portion or without it, the both-side winglet always provides better aerodynamic performance than the corresponding pressure-side winglet or suction-side winglet. Longer coverage of the both-side winglet leads to lower loss. Therefore, the full coverage winglet performs best in the loss reduction for the plane tip. In general, thinner winglet leads to better aerodynamic result, and the winglet cross section having a slant bottom surface with the smallest thickness at its outer end is recommended.  相似文献   

13.
翼型冠是控制涡轮叶片叶顶泄漏流动的一种叶顶结构。在翼型冠涡轮叶栅气动性能的数值模拟中,为降低计算成本,本文采用了一种基于源项的CFD技术。该方法无需构建翼型冠真实几何结构和生成贴体网格,只需在叶顶附近构建源项域并采用均匀网格进行离散,随后在网格点上定义材料多孔度,并在控制方程中引入与多孔度有关的源项函数。采用基于源项的数值模拟方法,首先计算了某一翼型冠涡轮平面叶栅的气动流场,并分析均匀网格尺寸和湍流模型方程源项对计算结果的影响。然后,在翼型冠源项基础上,分别增加了密封齿和叶顶喷气源项,以研究源项法在有密封齿和有叶顶喷气翼型冠叶栅性能计算中的准确性。通过与基于贴体网格(即真实结构)的数值模拟结果相对比,发现源项法计算能够较准确地评估翼型冠、密封齿和叶顶喷气对涡轮叶栅气动性能的影响。此外,降低均匀网格尺寸能提高源项法的可靠性。研究有助于发展用于模拟包含任意复杂结构流动问题的计算方法,能为基于源项法的翼型冠叶顶结构优化提供快速准确的数值模拟工具。  相似文献   

14.

The current study aims to understand the aero-thermal performance of a cooled cavity tip in a single stage transonic turbine. The squealer tip of the uncooled turbine blade was reduced to an aerodynamic loss with suppressing leakage flow. However, the aerodynamic loss study of the cooled turbine blade tip is rare. It is necessary to study the tip cavity of the cooled turbine blade. Depth, front blend radius and aft blend radius of the cavity were set as design variables, and 30 cases were chosen using design of experiments. These cases were calculated with conjugate heat transfer method. Approximation model was made using the Kriging method, and tip cavity shape was optimized with multidisciplinary design optimization. Average total pressure loss behind the trailing edge and cooling effectiveness of blade tip surface were set to the objective function. The aerodynamic optimization model decreased 1.6 % of total pressure loss, the heat transfer optimization model increased 1.3 % point of cooling effectiveness and aero-thermal optimization model were found. Volume of tip cavity becomes larger when three design variables are grown. Amount of tip leakage flow and its distribution over the tip region increases and total pressure loss and cooling effectiveness increase. In terms of heat transfer, blade tip without cavity is advantageous. Total pressure loss coefficient, however, also increases over 5 %. To improve both aero-thermal characteristics of cooled blade tip, the design using the multidisciplinary design optimization is recommended.

  相似文献   

15.

Aerodynamic loss measurements and flow visualizations have been conducted for a squealer tip with different winglets. The present results for seven winglets indicate that winglet coverage along the pressure side has a negative effect in the loss reduction, whereas winglet coverage along the suction side has a positive effect. Winglet coverage along both sides performs better than that along the pressure side but worse than that along the suction side. The upstream half of the suction-side winglet plays a crucial role in the loss reduction. Thus, this portion needs to be included in the winglet for better aerodynamic performance. The pressure-side winglet brings additional flow disturbances similar to the ones existing over the plane tip back to the tip gap flow over the squealer tip. For the suction-side winglet, however, the tip gap flow is separated from the casing in a wide range between the leading edge and mid-chord.

  相似文献   

16.
分析了叶尖损失机理,根据PRANDTL 和GLAUERT叶尖损失修正因子及叶素-动量理论,推导出考虑叶尖损失的叶片弦长公式,然后沿叶片展向积分,推导出与风力机尖速比和翼型升阻比关联的风力机转矩系数解析表达式,并得到风力机在任何稳定运行状态转矩系数的最高参数值,可作为风力机转矩系数的设计参考值。研究表明,叶尖损失对弦长的影响集中在叶尖部位,当升阻比为无穷大且尖速比从常见范围10变化到4时,叶尖损失导致转矩性能损失约4%~10%,且损失的数值随升阻比的变化极小。  相似文献   

17.
低压轴流风机叶顶间隙对叶尖涡及外部性能的影响研究   总被引:1,自引:0,他引:1  
基于其一动叶可调的低压轴流风机叶轮,通过对其在不同叶顶间隙下的叶顶区域进行数值模拟分析。计算结果分析表明:该轴流风机在叶顶间隙较小时虽然会出现泄漏流动,但不一定会出现泄漏涡,随着叶顶间隙的增大,泄漏流动将变得不明显,取而代之的是泄漏涡,并且泄漏涡的强度和影响区域随着间隙的增大而增大;在相同流量下,通风机的全压随着叶顶间隙的增大而减小;随着流量的降低,叶顶间隙越大,越早进入非稳定状态。  相似文献   

18.
基于数值优化方法的轴流压气机叶片设计与分析   总被引:1,自引:0,他引:1  
高坤  楚武利  董万峰 《流体机械》2007,35(6):18-23,4
基于商业软件NUMECA的叶轮机械全三维优化设计平台Design3D,采用三维N-S方程流场计算、网格自动生成、三维叶片参数化造型与遗传算法寻优相结合的方法,对一跨音速轴流压气机叶轮进行了三维叶片型线优化设计.优化目标是在流量、总压比不减小的情况下,降低总压损失,以提高其整体效率.优化叶片与原叶片相比,总压损失显著降低,等熵效率提高了1.285%,同时总压比和流量也都得到了提高.通过流场分析,可以看出优化叶片性能的提高主要是源于中上部叶展区域的总压损失的减小,而总压损失的减小则主要归功于分离区的减小和激波的削弱.  相似文献   

19.
对一典型涡轮静叶型开展了叶片反弯曲对涡轮静叶栅流场性能影响的试验研究。测量了直叶片叶栅和-10°、-20°弯曲叶片叶栅出口流场。结果表明,对该叶型叶栅,随着叶片反弯曲角的增加,叶栅出口通道涡的强度和尺度稍有增大,但位置变化不太明显,尾缘涡有所减弱,叶栅中部和端部横向二次流均增强;随着叶片反弯曲角的增加,叶栅中部损失变化不大,而端部附近损失明显增大,使叶栅总损失增大,直叶栅总损失最小。  相似文献   

20.
Losses on the turbine consist of the mechanical loss, tip clearance loss, secondary flow loss and blade profile loss etc.,. More than 60 % of total losses on the turbine is generated by the two latter loss mechanisms. These losses are directly related with the reduction of turbine efficiency. In order to provide a new design methodology for reducing losses and increasing turbine efficiency, a two-dimensional axial-type turbine blade shape is modified by the optimization process with two-dimensional compressible flow analysis codes, which are validated by the experimental results on the VKI turbine blade. A turbine blade profile is selected at the mean radius of turbine rotor using on a heavy duty gas turbine, and optimized at the operating condition. Shape parameters, which are employed to change the blade shape, are applied as design variables in the optimization process. Aerodynamic, mechanical and geometric constraints are imposed to ensure that the optimized profile meets all engineering restrict conditions. The objective function is the pitchwise area averaged total pressure at the 30 % axial chord downstream from the trailing edge. 13 design variables are chosen for blade shape modification. A 10.8 % reduction of total pressure loss on the turbine rotor is achieved by this process, which is same as a more than 1 % total-to-total efficiency increase. The computed results are compared with those using 11 design variables, and show that optimized results depend heavily on the accuracy of blade design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号