首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-Ray Photoelectron Spectroscopy (XPS) was used to extensively investigate the chemical structure of electrosynthesized poly(3-thiophene acetic acid). The observation of the integrity of carboxylic functionalities upon polymerization, along with the strong affinity between monomer and the herbicide atrazine (At) evidenced by Nuclear Magnetic Resonance, prompted the exploitation of the application of the electrosynthesized polymer in the preparation of a Molecularly Imprinted Polymer (MIP) for At. Experimental conditions for film electrosynthesis in the presence of template (At) were selected. XPS spectroscopy was used also for the characterization of the imprinted film, evidencing the entrapment of the template in polymer matrix and the removal of most template upon washing. Moreover, XPS results about the use of a cross-linking agent (3,3-bithiophene) for prospective improvement of MIP structural integrity are illustrated.  相似文献   

2.
A molecularly imprinted polymer (MIP) able to bind 4-nitrophenol (4-NP) was prepared using noncovalent molecular imprinting methods and evaluated as a selective sorbent in molecularly imprinted solid-phase extraction (MISPE) on-line coupled to a reversed-phase HPLC. It has been shown that the conditions chosen for washing the MIP and for eluting the analyte in the MISPE process are extremely important for ensuring good selectivity and recovery. River water samples, spiked with the 11 Environmental Protection Agency phenolic compounds at microgram per liter levels, were preconcentrated on-line using this MIP, and 4-NP was selectively extracted. The humic acid interference was simultaneously reduced considerably. The MIP was also compared with a commercially available highly cross-linked polymer (LiChrolut EN) and the former yielded cleaner extracts.  相似文献   

3.
Li J  Li Y  Zhang Y  Wei G 《Analytical chemistry》2012,84(4):1888-1893
A novel strategy to improve the sensitivity of molecularly imprinted polymer (MIP) sensors was proposed. An electrocatalytic Prussian blue (PB) film was electrochemically polymerized on an electrode surface to fabricate an MIP electrochemical sensor using oxytetracycline (OTC) as a template. The OTC determination relied on a competition reaction between OTC and glucose-oxidase-labeled OTC and the catalytic reduction of hydrogen peroxide by the modified PB film. Experimental results show that double amplification, which is based on the catalysis of inorganic PB films and the enzymatic effect of glucose oxidase, can remarkably increase the assay sensitivity. The main experimental conditions (including electrocatalysis of the PB film, pH effects, incubation and competition times, and anti-interference) were optimized. This novel MIP sensor can offer an femtomole detection limit for OTC. In addition, the feasibility of its practical applications has been demonstrated in the analysis of a series of real milk samples.  相似文献   

4.
This paper describes a new method for the determination of citalopram in biological fluids using molecularly imprinted solid-phase extraction as the sample cleanup technique combined with high performance liquid chromatography. The molecularly imprinted polymers were prepared using methacrylic acid as functional monomer, ethylene glycol dimethacrylate as crosslinker, chloroform as porogen and citalopram hydrobromide as the template molecule. The novel imprinted polymer was used as a solid-phase extraction sorbent for the extraction of citalopram from human serum and urine. Effective parameters on citalopram retention were studied. The optimal conditions for molecularly imprinted solid-phase extraction consisted of conditioning with 1 mL methanol and 1 mL of deionized water at neutral pH, loading of citalopram sample (50 μg L(-1)) at pH 9.0, washing using 1 mL acetone and elution with 3 × 1 mL of 10 % (v/v) acetic acid in methanol. The MIP selectivity was evaluated by checking several substances with similar molecular structures to that of citalopram. Results from the HPLC analyses showed that the calibration curve of citalopram using MIP from human serum and urine is linear in the ranges of 1-100 and 2-120 μg L(-1) with good precisions (2.5 and 1.5 % for 10.0 μg L(-1)), and recoveries (between 82-86 and 83-85 %), respectively.  相似文献   

5.
In this study, a novel quartz crystal microbalance (QCM) based on the modification of paraoxon imprinted polymer (TCM-Cd(II)-paraoxon) film onto a quartz crystal sensor has been developed for the determination of paraoxon. The sensor is based on a molecular imprinted polymer (MIP) which can be synthesized using paraoxon as a template molecule, Thiourea Modified Chitosan-Cd(II) (TCM-Cd(II)) as the metal-chelate monomer, ephychlorohydrin as a crosslinking agent. The MIP particles have been characterized by FTIR measurements and QCM sensor has characterized using AFM and ellipsometer. The performance of the paraoxon imprinted sensor has indicated that a selective and sensitive paraoxon imprinted sensor could be fabricated. The sensor is able to discriminate paraoxon in solution owing to the specific binding of the imprinted sites. The obtained paraoxon imprinted sensor has 0.02–1 μM linear range and low detection limit (0.02 μM). The selectivity studies have shown that the selectivity of prepared paraoxon imprinted sensor has found as being very high in the presence of parathion which is similar in structure with paraoxon. The paraoxon imprinted sensor has been repeatedly used for more than 7 months in many continuous experiments.  相似文献   

6.
采用分子自组装印迹技术在光引发条件下制备了以(S)-布洛芬为模板分子,α-甲基丙烯酸为功能单体的分子印迹聚合物。通过红外对聚合物的结构进行了表征。透射电镜结果表明,交联剂用量对印迹聚合物的形貌特征具有显著的影响。同时结合Scatchard分析研究了印迹聚合物的吸附性能及选择性识别能力,表明印迹聚合物特异性吸附容量为41μmol/g,印迹指数为2.28,对(S)-布洛芬形成单一结合位点,且表现出明显的吸附选择性。  相似文献   

7.
A computational approach for the design of a molecularly imprinted polymer (MIP) specific for Cyanobacterial toxin microcystin-LR is presented. By using molecular modeling software, a virtual library of functional monomers was designed and screened against the target toxin, employed as a template. The monomers giving the highest binding energy were selected and used in a simulated annealing (molecular dynamics) process to investigate their interaction with the template. The stoichiometric ratio observed from the simulated annealing study was used in MIP preparation for microcystin-LR. The monomers were copolymerized with a cross-linker in the presence of the template. A control (blank) polymer was prepared under the same conditions but in the absence of template. A competitive assay with microcystin-horseradish peroxidase conjugate was optimized and used to evaluate the affinity and cross-reactivity of the polymer. The performance of the artificial receptor was compared to the performance of monoclonal and polyclonal antibodies raised against the toxin. The results indicate that imprinted polymer has affinity and sensitivity comparable to those of polyclonal antibodies (the detection limit for microcystin-LR using the MIP-based assay was found to be 0.1 microg L-1), while superior chemical and thermal stabilities were obtained. Moreover, cross-reactivity to other toxin analogues was very low for the imprinted polymer, in contrast to the results achieved for antibodies. It is anticipated that the polymer designed could be used in assays, sensors, and solid-phase extraction.  相似文献   

8.
Zhu L  Chen L  Xu X 《Analytical chemistry》2003,75(23):6381-6387
A molecularly imprinted polymer (MIP) was prepared using (E)-piceatannol, a natural potential anti-epidermal growth factor receptor (EGFR) inhibitor, as the template and 4-vinylpyridine as the functional monomer. The template was isolated from a Chinese traditional Tibetan medicinal herb, Caragana jubata, by a solid-phase extraction procedure. The crude extract of this herb was loaded on the MIP column for the binding test, and two different compounds besides the template itself were specifically recognized by the polymer, which were identified to be butein and quercetin possessing potent anti-EGFR tyrosine kinase activities with IC(50) values of 10 and 15 microM, respectively. Affinity and selectivity for these inhibitors and another three compounds coexisting with the template in this herb were evaluated in the chromatographic mode. For the first time, the affinity of a molecularly imprinted polymer was investigated to be correlative to the bioactivities of the analytes. The chromatographic behavior of the analytes was consistent with their activity values: the more active inhibitor was retained longer on the MIP. This research work afforded us a new approach for the effective recognition of novel anti-EGFR inhibitors from herbs by using the MIP as the receptor mimic to assay the bioactivities of reserved components, which will be very helpful in the direct separation of lead candidates for anticancer drugs.  相似文献   

9.
The dopamine-imprinted conducting polymer film of 5-amino 8-hydroxy quinoline (AHQ) was electrodeposited on reduced graphene oxide (rGO)-modified glassy carbon (GC) electrode and was applied as a molecular recognition element for the selective determination of dopamine. The molecularly imprinted polymer (MIP)-modified electrode showed an excellent affinity towards dopamine due to the presence of imprinted site through hydrogen bonding interaction between dopamine and poly (AHQ) membrane. The molecular recognition ability of MIP-modified electrode was analyzed by cyclic voltammetric and differential pulse voltammetric techniques. The most stable geometry of the template–monomer complex in the pre-polymerization mixture was calculated by computational approaches. The rGO modification augmented both surface area and electron transfer kinetics of the bare electrode. The GC/rGO/MIP electrode possessed 2.83 fold current enhancements when compared to GC/MIP electrode, indicating the improvement in sensitivity due to rGO modification. The limit of detection and sensitivity of GC/rGO/MIP electrode was observed to be 32.7 nM and 13.3 AM?1 cm?2, respectively. The imprinting methodology provided an exceptional selectivity towards the detection of dopamine even in the presence of high concentration of possible physiological interferents. Moreover, the fabricated electrode was successfully employed for the detection of dopamine in human blood plasma samples proving the effectiveness of the sensor for the sensitive detection of dopamine from real samples.  相似文献   

10.
We report the transmission electron microscopy (TEM) imaging of a hydrogel based molecularly imprinted polymer (HydroMIP) specific to the template molecule bovine haemoglobin (BHb). A novel critical point drying based sample preparation technique was employed to prepare the molecularly imprinted polymer (MIP) samples in a manner that would facilitate the use of TEM to image the imprinted cavities, and provide an appropriate degree of both magnification and resolution to image polymer architecture in the <10 nm range. For the first time, polymer structure has been detailed that tentatively suggests molecularly imprinted cavities, ranging from 5 to 50 nm in size, that correlate (in terms of size) with the protein molecule employed as the imprinting template. The modified critical point drying sample preparation technique used may potentially play a key role in the imaging of all molecularly imprinted polymers, particularly those prepared in the aqueous phase.  相似文献   

11.
Two molecularly imprinted polymers were synthesized using either dichloromethane or toluene as the porogen and terbuthylazine as the template and were used as solid-phase extraction cartridges for the enrichment of six chlorotriazines (deisopropylatrazine, deethylatrazine, simazine, atrazine, propazine, and terbuthylazine) in natural water and sediment samples. The extracted samples were analyzed by liquid chromatography/diode array detection (LC/DAD). Several washing solvents, as well as different volumes, were tested for their ability to remove the matrix components nonspecifically adsorbed on the sorbents. This cleanup step was shown to be of prime importance to the successful extraction of the pesticides from the aqueous samples. The optimal analytical conditions were obtained when the MIP imprinted using dichloromethane was the sorbent, 2 mL of dichloromethane was used in the washing step, and the preconcentrated analytes were eluted with 8 mL of methanol. The recoveries were higher than 80% for all the chlorotriazines except for propazine (53%) when 50- or 100-mL groundwater samples, spiked at 1 microg/L level, were analyzed. The limits of detection varied from 0.05 to 0.2 microg/L when preconcentrating a 100-mL groundwater sample. Natural sediment samples from the Ebre Delta area (Tarragona, Spain) containing atrazine and deethylatrazine were Soxhlet extracted and analyzed by the methodology developed in this work. No significant interferences from the sample matrix were noticed, thus indicating good selectivity of the MIP sorbents used.  相似文献   

12.
Highly selective molecularly imprinted polymer (MIP) was synthesized by using methacrylic acid as functional monomer, trimethylolpropane trimethacrylate as cross-linker, chloroform as porogen and penicillin G potassium as template molecule. These imprinted polymers were used as solid-phase extraction sorbent for the selective extraction of penicillin G from the fermentation broth samples. Various parameters affecting the extraction efficiency of the MIP particles such as; effects of pH, wash and eluent solutions were evaluated. Molecular recognition properties and selectivity of these MIPs were estimated and the obtained results revealed high affinity for the target antibiotic. Equilibrium binding experiments were done to assess the performance of the MIP relative to non imprinted polymer (NIP). After optimizing the extraction parameters in molecularly imprinted solid-phase extraction (MISPE), successful imprinting was confirmed by comparison of the recoveries from the fermentation broth, ranging between 24–26% (RSD 4.1–4.5%, n = 4) for the NIPs and 83–88% (RSD 3.1–3.4%, n = 4) for the MIPs.  相似文献   

13.
Taher Alizadeh 《Thin solid films》2010,518(21):6099-6106
In this work a paraoxon voltammetric sensor was introduced. Different methods for integration of molecularly imprinted polymer (MIP) and electrochemical transducer were investigated. Three techniques including MIP particles embedding in the carbon paste (CP) (MIP-CP), coupling of MIP with the glassy carbon electrode (GC) surface by using poly epychloro hydrine (PECH) (MIP/PECH-GC) and MIP/graphite mixture thin layer attachment onto the glassy carbon electrode (MIP/Graphite-PECH-GC) were tested. The prepared electrodes were applied for paraoxon measurement by using a three-step procedure including analyte extraction in the electrode, electrode washing and electrochemical measurement of paraoxon. The washing of electrodes, after paraoxon extraction, led to high selectivity of electrode for paraoxon. It was found that MIP-CP electrode had higher response to paraoxon in comparison to other tested electrodes. Besides, the washing process decreased response magnitude of MIP/PECH-GC and MIP/Graphite-PECH-GC but, the response of MIP-CP was not affected considerably by the washing. Parathion was chosen to evaluate the selectivity of MIP based sensors. It was proved that the MIP-CP had better selectivity, wider linear range and lower detection limit in comparison to other tested electrodes. The developed MIP-CP electrode was used as a high selective sensor for paraoxon determination in water and vegetable samples.  相似文献   

14.
A coupled-column system, consisting of a combination of a molecularly imprinted polymer (MIP) and a C(18)-silica column, was used for selective triazine detection in the HPLC mode. Complex aqueous samples, spiked with triazines, were selectively extracted by the MIP followed by subsequent identification by analytical reversed-phase chromatography. The MIP showed good performance for selectively discriminating triazines from humic acid, whereas urine and apple extract had some tendency to be retained by the MIP. Enrichment was observed in all cases, and triazine-enrichment factors of up to 100 could be recorded, with good extraction efficiency (74-77%). The results indicate that the high selectivity of MIPs can be favorably used for selective sample enrichment in conjunction with reversed-phase HPLC.  相似文献   

15.
Data on the structure and recognition properties of the template-selective binding sites in molecularly imprinted polymer membranes are presented. Porous molecularly imprinted polymer membranes based on semi-interpenetrating polymer networks (semi-IPN) were synthesized using the method of molecular imprinting in a combination with the method of computational modeling. Methacrylic acid, itaconic acid, and acrylamide were identified as optimal functional monomers for a model template — atrazine. Optimal ratios between atrazine and functional monomers as well as their binding energies were determined using the method of computational modeling and compared with the experimental data on the adsorbtion capability of porous molecularly imprinted polymer membranes. The factors influencing quality of the template-binding sites in MIP membranes (binding energy template-functional monomer and the number of functional groups taking part in the recognition of the template molecule) were revealed. The computational atrazine-selective membranes were capable of highly-selective and effective adsorbtion of atrazine from its 10 9–10 4 M aqueous solutions, and were characterized by high stability during prolonged storage. The apparent structure of the synthetic mimics of biological receptors to triazine herbicides was compared with the structure of their natural counterparts.  相似文献   

16.
A technique for the synthesis of molecularly imprinted polymers (MIPs) in small scale (~55 mg) coupled with direct in situ processing and batch rebinding evaluation is reported. The primary assessment is based on quantification by HPLC or UV absorbance measurement of the amount of template released from the polymer in a given solvent. This method allows a rapid screening of the parameters of importance to reach a desired level of binding affinity capacity and selectivity for a given target molecule. This was demonstrated for the triazine herbicide terbutylazine, where an initial screening was performed for the type of functional monomer used in the MIP preparation. Thus among the six functional monomers tested, methyl methacrylate, 4-vinylpyridine, and N-vinyl-α-pyrrolidone led to rapid and quantitative extraction whereas methacrylic acid and (trifluoromethyl)acrylic acid led to polymers that retained the template the most. After having established useful functional monomers, a secondary screening for selectivity was performed. In this, nonimprinted blank polymers were prepared and a normal batch rebinding evaluation was performed. The polymer showing the highest selectivity was the one prepared using methacrylic acid as functional monomer. This polymer was shown to strongly retain chlorotriazines including atrazine when a normal-scale batch of the polymer was evaluated in chromatography.  相似文献   

17.
ABSTRACT

In this work, the stereoselective release behaviors of “low”-swelling molecularly imprinted polymer (MIP) bead matrices in pressed-coat tablet type were studied. Either R-propranolol selective MIP or S-propranolol selective MIP was combined with excipients and racemic propranolol and fabricated into the matrix. Subsequently, the release of different propranolol enantiomers from the matrices was examined. Also, the microscopic structure of the hydrated “low”-swelling MIP matrix was determined using a cryogenic scanning electron microscope in order to compare with that of the hydrated “high”-swelling MIP matrix. In vitro release profiles of the “low”-swelling matrices showed a difference in the release of enantiomers, in that the non-template isomer was released faster than the template isomer. However, in the last phase of dissolution this difference reduced and later reversed, resulting at last in the type of specificity being similar to that obtained previously with “high”-swelling MIP matrices.

n summary, MIP beads can be fashioned into matrices and incorporated into different formulations to regulate the resultant stereoselectivity. From the behaviors of stereoselective release observed in MIP matrices, we can conclude that the enantioselective-controlled delivery mechanism of MIPs via formulations depends on the relative affinity of the enantiomer for the template sites, as well as the nature of the polymer, such as hydrophobicity and swellability.  相似文献   

18.
Ou J  Li X  Feng S  Dong J  Dong X  Kong L  Ye M  Zou H 《Analytical chemistry》2007,79(2):639-646
A method for preparation of molecularly imprinted polymer (MIP) derivatized onto the surface of a monolithic silica capillary column was successfully developed. The vinyl groups were first introduced onto the silica monolith by immobilization of gamma-methacryloxypropyltrimethoxysilane. Then the MIP coating was copolymerized and anchored onto the surface of the silica monolith. Acetonitrile was selected as porogen (solvent). The other preparation conditions, such as monomer concentration, temperature, and time of polymerization, were systematically studied. The obtained MIP-derivatized silica monolith using l-tetrahydropalmatine (l-THP) and (5S,11S)-(-)-Tr?ger's base (S-TB) as the imprinted template, respectively, was characterized in terms of the retention behavior of thiourea and toluene. Under the optimized CEC conditions, baseline enantioseparations of THP and TB were achieved in 4 min though the effective length of the columns was 8.5 cm. The result indicates that enough recognition sites were on the surface of silica monolith, resulting in strong recognition ability. Compared with a MIP organic monolith, the MIP-derivatized silica monolith exhibits better column efficiency and stability in CEC. Additionally, the comparison of these two kinds of monolithic columns was performed by capillary liquid chromatography. The separation on MIP-derivatized silica monolith was superior to that on the organic monolith.  相似文献   

19.
20.
In the present work, a paraoxon imprinted QCM sensor has been developed for the determination of paraoxon based on the modification of paraoxon imprinted film onto a quartz crystal combining the advantages of high selectivity of the piezoelectric microgravimetry using MIP film technique and high sensitivity of QCM detection. The paraoxon selective memories have formed on QCM electrode surface by using a new metal–chelate interaction based on pre-organized monomer and the paraoxon recognition activity of these molecular memories was investigated. Molecular imprinted polymer (MIP) film for the detection of paraoxon was developed and the analytical performance of paraoxon imprinted sensor was studied. The molecular imprinted polymer were characterized by FTIR measurements. Paraoxon imprinted sensor was characterized with AFM and ellipsometer. The study also includes the measurement of binding interaction of paraoxon imprinted quartz crystal microbalance (QCM) sensor, selectivity experiments and analytical performance of QCM electrode. The detection limit and the affinity constant (Kaffinity) were found to be 0.06 μM and 2.25 × 104 M? 1 for paraoxon [MAAP–Cu(II)–paraoxon] based thin film, respectively. Also, it has been observed that the selectivity of the prepared paraoxon imprinted sensor is high compared to a similar chemical structure which is parathion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号