首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

In 2001 the Swiss nuclear utilities started to store spent fuel in dry metallic dual purpose casks at ZWILAG, the Swiss interim storage facility. BKW FMB Energy Ltd, as the owner of the Mühleberg nuclear power plant, is involved in this process and has selected to store the spent fuel in a new high capacity dual purpose cask, the TN24BH. For the transport Cogema Logistics has developed a new medium size cask, the TN9/4, to replace the NTL9 cask, which has performed numerous shipments of BWR spent fuel in past decades. Licensed by the IAEA 1996, the TN9/4 is a 40 t transport cask, for seven BWR high burnup spent fuel assemblies. The spent fuel assemblies can be transferred to the ZWILAG hot cell in the TN24BH cask. These casks were first used in 2003. Ten TN9/4 shipments were made, and one TN24BH was loaded. After a brief presentation of the operational aspects, the paper will focus on the TN24BH high capacity dual purpose cask and the TN9/4 transport cask and describe in detail their characteristics and possibilities.  相似文献   

2.
3.
4.
Abstract

Cylindrical fuel casks often have impact limiters surrounding the ends of the cask shaft in a typical 'dumbbell' arrangement. The primary purpose of these impact limiters is to absorb energy to reduce loads on the cask structure during impacts associated with a severe accident. Impact limiters are also credited in many packages with protecting closure seals and reducing peak temperatures during fire events. For this credit to be taken in safety analyses, the impact limiter attachment system must be shown to retain the impact limiter following normal conditions of transport (NCT) and hypothetical accident conditions (HAC) impacts. Large casks are often certified by analysis only because of the cost associated with testing. Therefore, some cask impact limiter attachment systems have not been tested in real impacts. A recent structural analysis of the T-3 spent fuel containment cask found problems with the design of the impact limiter attachment system. Assumptions in the original safety analysis for packaging (SARP) concerning the loading in the attachment bolts were found to be inaccurate in certain drop orientations. This paper documents the lessons learned and their applicability to impact limiter attachment system designs.  相似文献   

5.
Abstract

Approval is required under the transport regulations for a wide range of package designs and operations, and applications for competent authority approval and validation are received from many sources, both in the UK and overseas. To assist package designers and applicants for approval, and to promote consistency in applications and their assessment, the UK Department for Transport issues guidance on the interpretation of the transport regulations and the requirements of an application for approval and its supporting safety case.The general guidance document, known as the Guide to an Application for UK Competent Authority Approval of Radioactive Material in Transport, has been issued for many years and updated to encompass the provisions of each successive edition of the IAEA transport regulations. The guide has been referred to in a number of international fora, including PATRAM, and was cited as a 'good practice' in the report of the IAEA TRANSAS appraisal of the UK in 2002. Specialist guides include the Guide to the Suitability of Elastomeric Seal Materials, and the Guide to the Approval of Freight Containers as Types IP-2 and IP-3 Packages. This paper discusses the guidance material and summarises the administrative and technical information required in support of applications for approval of package designs, special form and low-dispersible radioactive materials, shipments, special arrangements, modifications and validations.  相似文献   

6.
Abstract

In recent years, BAM Federal Institute for Materials Research and Testing finalised the competent authority assessment of the mechanical and thermal package design in several German approval procedures of new spent fuel and high level waste package designs. The combination of computational methods and experimental investigations in conjunction with materials and cask components testing is the most common approach to mechanical safety assessment. The methodology in the field of safety analysis, including associated assessment criteria and procedures, has evolved rapidly over the last years. The design safety analysis must be based on a clear and comprehensive safety evaluation concept, including defined assessment criteria and constructional safety goals. In general, for new package designs, the implementation of experimental package drop tests in the approval process should be obligatory. Additionally, pre- and post-test calculations as well as components or material testing could be important. The extent to which drop tests are necessary depends on the individual package construction, the materials used and identified safety margins in the design.  相似文献   

7.
The casks used for transport of nuclear materials, especially the spent fuel element (SPE), must be designed according to rigorous acceptance criteria and standards requirements, e.g. the International Atomic Energy Agency ones, in order to provide protection to people and environment against radiation exposure particularly in a severe accident scenario.The aim of this work was the evaluation of the integrity of a spent fuel cask under both normal and accident scenarios transport conditions, such as impact and rigorous fire events, in according to the IAEA accident test requirements. The thermal behaviour and the temperatures distribution of a Light Water Reactor (LWR) spent fuel transport cask are presented in this paper, especially with reference to the Italian cask designed by AGN, which was characterized by a cylindrical body, with water or air inside the internal cavity, and two lateral shock absorbers.Using the finite element code ANSYS a series of thermal analyses (steady-state and transient thermal analyses) were carried out in order to obtain the maximum fuel temperature and the temperatures field in the body of the cask, both in normal and in accidents scenario, considering all the heat transfer modes between the cask and the external environment (fire in the test or air in the normal conditions) as well as inside the cask itself.In order to follow the standards requirements, the thermal analyses in accidents scenarios were also performed adopting a deformed shape of the shock absorbers to simulate the mechanical effects of a previous IAEA 9 m drop test event. Impact tests on scale models of the shock absorbers have already been conducted in the past at the Department of Mechanical, Nuclear and Production Engineering, University of Pisa, in the ‘80s. The obtained results, used for possible new licensing approval purposes by the Italian competent Authority of the cask for PWR spent fuel cask transport by the Italian competent Authority, are discussed.  相似文献   

8.
Abstract

A probabilistic risk assessment (PRA) quantifies the frequency of criticality accidents during railroad transport of spent nuclear fuel casks (SFCs) in the USA. It evaluates the likelihood that undetected errors in fuel selection and/or fuel handling could result in a misloaded SFC susceptible to a criticality event following an accident during rail transport of the cask. The PRA shows that existing fuel burnup records and formal procedures for loading a SFC make the likelihood of shipping a misloaded SFC on the order of 2·6 × 10–6 per SFC. When combined with historical evidence regarding train accidents and an estimate of the likelihood that an accident could breach and submerge a SFC, the calculated frequency of criticality is below 2 × 10–12 over the 11 000 shipments that would be required to ship the spent fuel inventory generated by the current US fleet of nuclear reactors, assuming that they each operate for 60 years.  相似文献   

9.
Abstract

The US Nuclear Regulatory Commission has recently completed an updated Spent Fuel Transportation Risk Assessment, NUREG-2125. This assessment considered the response of three certified casks to a range of fire accidents in order to determine whether or not they would lose their ability to contain the spent fuel or maintain effective shielding. The casks consisted of a lead shielded rail cask that can be transported either with or without an inner welded canister, an all steel rail cask that is transported with an inner welded canister, and a DU shielded truck cask that is transported with directly loaded fuel. For the two rail casks, large pool fires that were concentric (fully engulfing), offset from the casks by 3 m, and offset from the cask by 18 m were analysed using the computational fluid dynamics CAFE-3D fire modelling code coupled with the finite element analysis PATRAN-Thermal heat transfer code. All of the fires were assumed to last for 3 h. In addition to these extraregulatory fires, the regulatory 30 min fire was analysed using both the regulatory uniform 800°C boundary condition and the more realistic CAFE-3D fire modelling code. For the truck cask, only the engulfing fire case was analysed using a 1 h fire duration. In all of the fire analyses, the seal region of the cask stayed below the failure temperature; therefore, there would be no release of radioactive material. In addition, the temperature of the fuel rods stayed below their burst rupture temperature, providing another barrier to release. For the lead shielded cask, very severe fires cause some of the lead to melt. There is no leak path for this molten lead to exit the shield region, but its expansion during the melting and subsequent contraction due to solidification during cool down results in a reduction in gamma shielding effectiveness.  相似文献   

10.
Abstract

Cask impacts without impact limiters onto unyielding targets result in totally different mechanical reactions from those of relatively smooth impacts using impact limiters. During the licensing procedure of the new GNS CASTOR HAW 28M design for vitrified high activity waste, BAM therefore decided to perform an additional drop test with a 1 : 2 scale test cask (CASTOR HAW/TB2). In spite of a small drop height of only 0˙3 m onto the unyielding target of the BAM drop test facility, which conservatively covers any storage building foundation, the impact caused considerable stresses to the cask structure with high stress and strain rates. This paper presents the evaluation strategy of BAM including the drop test results and the development and qualification of appropriate finite element modelling to achieve sufficient agreement between test and calculation results. Further steps include mechanical analyses of reduced and full scale cask designs to determine the most critically stressed areas of the structure, verify scaling factors and demonstrate safety with respect to cask integrity and tightness.  相似文献   

11.
Abstract

Before being back filled with an inert gas and as preparation for shipment, a spent nuclear fuel shipping cask must usually be vacuum dried. This process results in an increase in the spent fuel temperature, due to the degradation of heat transport by the cover gas. The drying process is typically modelled by a thermal conduction set to zero in all the shipping cask free spaces. However, this approach does not take into account heat transfers that occur in a rarefied medium and, therefore, may be extremely conservative. A first analysis was performed in order to spot the cask areas whose thermal behaviour is modified by the drying process. This analysis involved the calculation of the Knudsen number, defined as the molecular mean free path to a representative length scale, for all the free spaces. The only area impacted by the drying process appeared to be the mechanical gap between the fuel basket and the shielding materials. During the drying process, the Knudsen number is actually large enough within the gap to consider the gas as a non-continuous medium. Results and methods coming from the microfluidics area were therefore used to develop a modelling, which is based on a double approach. First, an analytical approach was used. This approach consists in adding to the Fourier equation a new equation accounting for the thermodynamical non-equilibrium within the gap (Maxwell–Smoluchowski temperature jump). A thermal model, suitable to calculate heat transfers at pressures as low as 1 mbar, was developed. A second model, based on a statistical approach, was then developed. This model involves the Direct Simulation Monte Carlo method, a reference method used for microfluidics calculations. Computer simulations were performed and led to a good agreement with the results obtained by the analytical approach.  相似文献   

12.
Abstract

Three Latin American countries which operate research reactors, Argentina, Brazil and Chile, have joined efforts to improve the capability in the management of spent fuel elements from the reactors operated in the region. As a step in this direction, a packaging for the transport of irradiated fuel from research reactors was designed by a tri-national team and a half scale model for materials test reactor fuel was constructed in Argentina and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions.

In this paper both the numerical modelling and mechanical tests to select adequate shock absorbers materials are presented. Results of these tasks are used to improve the cask design.  相似文献   

13.
Abstract

Transport packages for spent fuel have to meet the requirements concerning containment, shielding and criticality as specified in the International Atomic Energy Agency regulations for different transport conditions. Physical state of spent fuel and fuel rod cladding as well as geometric configuration of fuel assemblies are, among others, important inputs for the evaluation of correspondent package capabilities under these conditions. The kind, accuracy and completeness of such information depend upon purpose of the specific problem. In this paper, the mechanical behaviour of spent fuel assemblies under accident conditions of transport will be analysed with regard to assumptions to be used in the criticality safety analysis. In particular the potential rearrangement of the fissile content within the package cavity, including the amount of the fuel released from broken rods has to be properly considered in these assumptions. In view of the complexity of interactions between the fuel rods of each fuel assembly among themselves as well as between fuel assemblies, basket, and cask body or cask lid, the exact mechanical analysis of such phenomena under drop test conditions is nearly impossible. The application of sophisticated numerical models requires extensive experimental data for model verification, which are in general not available. The gaps in information concerning the material properties of cladding and pellets, especially for the high burn-up fuel, make the analysis more complicated additionally. In this context a simplified analytical methodology for conservative estimation of fuel rod failures and spent fuel release is described. This methodology is based on experiences of BAM acting as the responsible German authority within safety assessment of packages for transport of spent fuel.  相似文献   

14.
Aging management of spent fuel storage facility may follow lessons learned from literature for nuclear power plant and a review for spent fuel dry cask storage system by US NRC, DOE, by German BAM, that by Japan NISA, etc. Namely, the essence of systematic approach to aging management includes Understanding aging, Plan (Development and optimisation of activities for aging management), Do (Managing aging mechanisms), Check (Monitoring, inspection and assessment), and Act (Maintenance). The PDCA cycle will optimise the systematic approach to the aging management. An aging management programme (AMP) for the storage system over the period of extended storage will address uncertainties in the safety relevant functions of the system that may otherwise be impaired by aging mechanisms. The AMP identifies system, structure and components (SSCs) that need specific actions to mitigate aging and ensures that no aging effects result in a loss of their intended function of the SSCs, during an intended licensed period. AMPs generally include Prevention, Mitigation, Monitoring, Inspection, and Maintenance programmes. Aging management plans should ensure compliance with transportation requirements after extended storage. Potential issue would be a significant change of the transport regulations in the future. If the regulations changed significantly, a gap analysis should be performed to identify any impact to the cask safety. Compensating arrangements, if necessary, should be proposed at that time. Assuming that the regulations will not change significantly after long term storage, we will be able to renew the license both for transport and storage of the cask during the storage period. For example, in Japan, a holistic approach was established for the license of a 50 year storage and transport. In this approach, we can evaluate integrity of spent fuel, basket, etc. with respect to chemical, thermal, mechanical, and radiation factors. With this approach we will not have to open the cask lid for visual inspection of the spent fuel, basket, etc. prior to the post-storage transport.  相似文献   

15.
Abstract

Admissible limits for activity release from type B(U) packages for spent fuel transport specified in the International Atomic Energy Agency regulations (10?6 A2 h?1 for normal conditions of transport and A2 per week for accidental conditions of transport) have to be kept by an appropriate function of the cask body and its sealing system. Direct measurements of activity release from the transport casks are not feasible. Therefore, the most common method for the specification of leak tightness is to relate the admissible limits of activity release to equivalent standardised leakage rates. Applicable procedure and calculation methods are summarised in the International Standard ISO 12807 and the US standard ANSI N14·5. BAM as the German competent authority for mechanical, thermal and containment assessment of packages liable for approval verifies the activity release compliance with the regulatory limits. Two fundamental aspects in the assessment are the specification of conservative design leakage rates for normal and accidental conditions of transport and the determination of release fractions of radioactive gases, volatiles and particles from spent fuel rods. Design leakage rates identify the efficiency limits of the sealing system under normal and accidental transport conditions and are deduced from tests with real casks, cask models or components. The releasable radioactive content is primarily determined by the fraction of rods developing cladding breaches and the release fractions of radionuclides due to cladding breaches. The influence of higher burn-ups on the failure probability of the rods and on the release fractions are important questions. This paper gives an overview about methodology of activity release calculation and correlated boundary conditions for assessment.  相似文献   

16.
A packaging for the transport of irradiated fuel from research reactors was designed by a group of researchers to improve the capability in the management of spent fuel elements from the reactors operated in the region. Two half scale models for MTR fuel were constructed and tested so far and a third one for both MTR and TRIGA fuels will be constructed and tested next. Four test campaigns have been carried out, covering both normal and hypothetical accident conditions of transportation. The thermal test is part of the requirements for the qualification of transportation packages for nuclear reactors spent fuel elements. In this paper, both the numerical modelling and experimental thermal tests performed are presented and discussed. The cask is briefly described as well as the finite element model developed and the main adopted hypotheses for the thermal phenomena. The results of both numerical runs and experimental tests are discussed as a tool to validate the thermal modelling. The impact limiters, attached to the cask for protection, were not modelled.  相似文献   

17.
Abstract

Preliminary studies of used fuel generated in the US Department of Energy's Advanced Fuel Cycle Initiative have indicated that current used fuel transport casks may be insufficient for the transportation of said fuel. This work considers transport of three 5-year-cooled oxide advanced burner reactor used fuel assemblies with a burn-up of 160 MWD kg–1. A transport cask designed to carry these assemblies is proposed. This design employs a 7-cm-thick lead gamma shield and a 20-cm-thick NS-4-FR composite neutron shield. The temperature profile within the cask, from its centre to its exterior surface, is determined by two-dimensional computational fluid dynamics simulations of conduction, convection and radiation within the cask. Simulations are performed for a cask with a smooth external surface and various neutron shield thicknesses. Separate simulations are performed for a cask with a corrugated external surface and a neutron shield thickness that satisfies shielding constraints. Resulting temperature profiles indicate that a three-assembly cask with a smooth external surface will meet fuel cladding temperature requirements but will cause outer surface temperatures to exceed the regulatory limit. A cask with a corrugated external surface will not exceed the limits for both the fuel cladding and outer surface temperatures.  相似文献   

18.
Abstract

With the support of the International Atomic Energy Agency, a packaging to transport research reactor irradiated fuel was designed by a trinational team from Argentina, Brazil and Chile. A half-scale model for materials test reactor fuel was constructed and tested according to specifications of regional regulations. Numerical modelling of impact problems played a key role in the cask development. During the design process, it was necessary to improve the performance of the shock absorbers and the containment system. This process was carried out using numerical simulations to predict the behaviour of different shock absorber materials, to consider design improvements and to select the drop orientations. The finite element method was used to simulate the impact problem, and a particular effort was undertaken to model all of the geometrical features with high detail, constitutive equations of different materials and multiple contact problems.  相似文献   

19.
Abstract

The current uncertainty surrounding the licensing and eventual opening of a long term geologic repository for the nation’s civilian and defense spent nuclear fuel and high level radioactive waste has shifted the window for the length of time spent fuel could be stored to periods of time significantly longer than the current licensing period of 40 years for dry storage. An alternative approach may be needed to the licensing of high burnup fuel for storage and transportation based on the assumption that spent fuel cladding may not always remain intact. The approach would permit spent fuel to be retrieved on a canister basis and could lessen the need for repackaging of spent fuel. This approach is being presented as a possible engineering solution to address the uncertainties and lack of data availability for cladding properties for high burnup fuel and extended storage time frames. The proposed approach does not involve relaxing current safety standards for criticality safety, containment, or permissible external dose rates.  相似文献   

20.
Interrogation of nuclear fuel and Plutonium (Pu) and Uranium (U) discrimination was performed using Missouri University of Science and Technology Reactor (MSTR) fuel by non-destructive (NDA) method. Post-irradiated delayed fast neutron spectra were obtained for two pairs of burnt and fresh fuels. Burnup and 239Pu conversions were calculated based on neutron emission intensity ratios. After 100 kW high power runs, all fuel elements showed three distinct regions of neutron spectra; a distinct low energy peak followed by intermediate energy region without distinct peak but a wide hump, followed by a high energy peak with a long tail. At 10 kW low powers, intermediate energy hump and low energy peak seems to merge together while the high energy peak still remains distinct. Based on data from 10 kW power runs, the burnup values of F1 and F2 fuel elements were estimated to be 149 MWD/T and 196 MWD/T, respectively. 239Pu conversion since 1992 for low enriched (19.75%) fuel elements was calculated as 0.24 g for F1 and 0.32 g for F2. Results based on high power runs of 100 kW provided comparable burnup of 217 MWD/T for F2. However the results for F1 were approximately 10 times higher perhaps due to unique burnup history and consequently high poison buildup. These experimental burnup results compare well with the reactor burnup calculation as reported to the Nuclear Regulatory Commission (NRC).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号